Novel optically active lead-free relaxor ferroelectric (Ba0.6Bi0.2Li0.2)TiO3.

J Phys Condens Matter

CSIR-National Physical Laboratory, Dr K S Krishnan Marg, New Delhi 110012, India. Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus, Dr K S Krishnan Road, New Delhi 110012, India.

Published: July 2016

We discovered a near-room-temperature lead-free relaxor-ferroelectric (Ba0.6Bi0.2Li0.2)TiO3 (BBLT) having A-site compositionally disordered ABO3 perovskite structure. Microstructure-property relations revealed that the chemical inhomogeneities and development of local polar nano-regions (PNRs) are responsible for dielectric dispersion as a function of probe frequencies and temperatures. Rietveld analysis indicates mixed crystal structure with 80% tetragonal structure (space group P4mm) and 20% orthorhombic structure (space group Amm2), which is confirmed by the high resolution transmission electron diffraction (HRTEM). Dielectric constant and tangent loss dispersion with and without illumination of light obey nonlinear Vogel-Fulcher (VF) relations. The material shows slim polarization-hysteresis (P-E) loops and excellent displacement coefficients (d 33 ~ 233 pm V(-1)) near room temperature, which gradually diminish near the maximum dielectric dispersion temperature (T m ). The underlying physics for light-sensitive dielectric dispersion was probed by x-ray photon spectroscopy (XPS), which strongly suggests that mixed valence of bismuth ions, especially Bi(5+) ions, comprise most of the optically active centers. Ultraviolet photoemission measurements showed most of the Ti ions are in 4 +  states and sit at the centers of the TiO6 octahedra; along with asymmetric hybridization between O 2p and Bi 6s orbitals, this appears to be the main driving force for net polarization. This BBLT material may open a new path for environmental friendly lead-free relaxor-ferroelectric research.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/28/26/265901DOI Listing

Publication Analysis

Top Keywords

dielectric dispersion
12
optically active
8
lead-free relaxor-ferroelectric
8
structure space
8
space group
8
novel optically
4
active lead-free
4
lead-free relaxor
4
relaxor ferroelectric
4
ferroelectric ba06bi02li02tio3
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!