Japanese quail is still used as a model for poultry research because of their usefulness as laying, meat, and laboratory animals. Microsatellite markers are the most widely used molecular markers, due to their relative ease of scoring and high levels of polymorphism. The objective of the research was to determine genetic diversity and population genetic structures of selected Japanese quail lines (high body weight 1 [HBW1], HBW2, low body weight [LBW], and layer [L]) throughout 15th generations and an unselected control (C). A total of 69 individuals from five quail lines were genotyped by fifteen microsatellite markers. When analyzed profiles of the markers the observed (H) and expected (H) heterozygosity ranged from 0.04 (GUJ0027) to 0.64 (GUJ0087) and 0.21 (GUJ0027) to 0.84 (GUJ0037), respectively. Also, H and H were separated from 0.30 (L and LBW) to 0.33 (C and HBW2) and from 0.52 (HBW2) to 0.58 (L and LBW), respectively. The mean polymorphic information content (PIC) ranged from 0.46 (HBW2) to 0.52 (L). Approximately half of the markers were informative (PIC≥0.50). Genetic distances were calculated from 0.09 (HBW1 and HBW2) to 0.33 (C and L). Phylogenetic dendrogram showed that the quail lines were clearly defined by the microsatellite markers used here. Bayesian model-based clustering supported the results from the phylogenetic tree. These results reflect that the set of studied markers can be used effectively to capture the magnitude of genetic variability in selected Japanese quail lines. Also, to identify markers and alleles which are specific to the divergence lines, further generations of selection are required.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5088416 | PMC |
http://dx.doi.org/10.5713/ajas.15.0940 | DOI Listing |
FEMS Microbiol Lett
January 2025
Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, USA.
Commensal Neisseria are members of a healthy human oropharyngeal microbiome; however, they also serve as a reservoir of antimicrobial resistance for their pathogenic relatives. Despite their known importance as sources of novel genetic variation for pathogens, we still do not understand the full suite of resistance mutations commensal species can harbor. Here, we use in vitro selection to assess the mutations that emerge in response to ciprofloxacin selection in commensal Neisseria by passaging 4 replicates of 4 different species in the presence of a selective antibiotic gradient for 20 days; then categorized derived mutations with whole genome sequencing.
View Article and Find Full Text PDFFront Biosci (Schol Ed)
December 2024
School of Biosciences, University of Kent, CT2 7NJ Canterbury, Kent, UK.
Poult Sci
December 2024
Animal Bioscience and Biotechnology Laboratory United States Department of Agriculture-Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA. Electronic address:
In vitro tests were conducted to characterize the host-mediated responses of chickens to Clove Essential Oil (CEO) and Oregano Essential Oil (OEO). Chicken macrophage cells (CMCs), chicken intestinal epithelial cells (IECs), quail muscle cells (QMCs), and chicken embryonic muscle cells (EMCs) were utilized in these assays. EMCs were collected from the 13-day-old embryo during egg incubation and all cell lines were seeded at 2 × 10/mL in a 24-well plate.
View Article and Find Full Text PDFTrop Anim Health Prod
November 2024
Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt.
Offspring sex ratios in avian species are of significant scientific interest, with implications for evolutionary biology and poultry production. This study investigated sex ratios in Japanese quail (Coturnix japonica), a valuable model for other poultry species due to its rapid generation interval. The study examined the impact of selection over generations, age at first egg (AFE), and body weight at AFE (BW) on offspring sex ratios.
View Article and Find Full Text PDFSci Rep
October 2024
INRAE, CNRS, Université de Tours, PRC, Nouzilly, F-37380, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!