Obesity and diabetes are associated with higher cardiac vulnerability to ischemia-reperfusion (IR). The cardioprotective effect of regular exercise has been attributed to β3-adrenergic receptor (β3AR) stimulation and increased endothelial nitric oxide synthase (eNOS) activation. Here, we evaluated the role of the β3AR-eNOS pathway and NOS isoforms in exercise-induced cardioprotection of C57Bl6 mice fed with high fat and sucrose diet (HFS) for 12 weeks and subjected or not to exercise training during the last 4 weeks (HFS-Ex). HFS animals were more sensitive to in vivo and ex vivo IR injuries than control (normal diet) and HFS-Ex mice. Cardioprotection in HFS-Ex mice was not associated with increased myocardial eNOS activation and NO metabolites storage, possibly due to the β3AR-eNOS pathway functional loss in their heart. Indeed, a selective β3AR agonist (BRL37344) increased eNOS activation and had a protective effect against IR in control, but not in HFS hearts. Moreover, iNOS expression, nitro-oxidative stress (protein s-nitrosylation and nitrotyrosination) and ROS production during early reperfusion were increased in HFS, but not in control mice. Exercise normalized iNOS level and reduced protein s-nitrosylation, nitrotyrosination and ROS production in HFS-Ex hearts during early reperfusion. The iNOS inhibitor 1400 W reduced in vivo infarct size in HFS mice to control levels, supporting the potential role of iNOS normalization in the cardioprotective effects of exercise training in HFS-Ex mice. Although the β3AR-eNOS pathway is defective in the heart of HFS mice, regular exercise can protect their heart against IR by reducing iNOS expression and nitro-oxidative stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00395-016-0559-0 | DOI Listing |
Sci Rep
January 2025
Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, SK-83232, Bratislava, Slovakia.
Oxidative stress and apoptosis are highly engaged in development of diabetic nephropathy (DN). In monotherapy, dapagliflozin and pioglitazone positively modulate target organ damage even independently of their hypoglycaemic effect. This study evaluated whether a simultaneous PPARγ activation and SGLT cotransporter inhibition offer superior protection against DN-related oxidative and apoptotic processes in a T1DM rat model.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
Glomerular endothelial cells (GECs) are pivotal in developing glomerular sclerosis disorders. The advancement of focal segmental glomerulosclerosis (FSGS) is intimately tied to disruptions in lipid metabolism. Sphingosine-1-phosphate (S1P), a molecule transported by high-density lipoproteins (HDL), exhibits protective effects on vascular endothelial cells by upregulating phosphorylated endothelial nitric oxide synthase (p-eNOS) and enhancing nitric oxide (NO) production.
View Article and Find Full Text PDFNitric Oxide
January 2025
Division of Systems Biomedicine and Pharmacology, LACDR, Leiden University, the Netherlands.
COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), primarily manifests as a flu-like illness with lung injury, often necessitating supplemental oxygen. Elderly individuals and those with pre-existing cardiovascular diseases are at increased risk of mortality. The endothelial barrier disruption observed in patients indicates systemic viral invasion and widespread endotheliitis.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
Acute Kidney Injury (AKI) is a significant medical condition characterized by the abrupt decline in kidney function.Low-intensity pulsed ultrasound (LIPUS), a non-invasive therapeutic technique employing low-intensity acoustic wave pulses, has shown promise in promoting tissue repair and regeneration. A novel LIPUS system was developed and evaluated in rat AKI models, focusing on its effects on glomerular filtration rate (GFR), blood urea nitrogen (BUN), serum creatinine (SCr), and the Notch1-Akt-eNOS signaling pathway.
View Article and Find Full Text PDFAndrology
January 2025
Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
Background: Androgen deprivation is associated with erectile dysfunction (ED). In different animal models, sulfur dioxide (SO) donors NaSO and NaHSO reduced oxidative stress, fibrosis, and inflammation which contribute to the pathogenesis of androgen deprivation-induced ED, however the effect of SO donors on ED in castrated rats were not known.
Objective: To investigate the therapeutic effect of SO donors, NaSO/NaHSO, on ED in castrated rat model.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!