S-N inhibitors like thiourea and sewage sludge decomposition gases (SDG) are relatively novel dioxins suppressants and their efficiencies are proven in numerous lab-scale experiments. In this study, the suppression effects of both thiourea and SDG on the formation of dioxins are systematically tested in a pilot-scale system, situated at the bypass of a hazardous waste incinerator (HWI). Moreover, a flue gas recirculation system is used to get high dioxin suppression efficiencies. Operating experience shows that this system is capable of stable operation and to keep gaseous suppressant compounds at a high and desirable molar ratio (S + N)/Cl level in the flue gas. The suppression efficiencies of dioxins are investigated in flue gas both without and with addition of S-N inhibitors. A dioxin reduction of more than 80 % is already achieved when the (S + N)/Cl molar ratio is increased to ca. 2.20. When this (S + N)/Cl molar ratio has augmented to 4.18 by applying suppressant recirculation, the residual PCDD/Fs concentration in the flue gas shrank from 1.22 to 0.08 ng I-TEQ/Nm(3). Furthermore, the congener distribution of dioxins is analysed to find some possible explanation or suppression mechanism. In addition, a correlation analysis between (S + N)/Cl molar ratios and PCDD/Fs is also conducted to investigate the chief functional compounds for dioxin suppression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-016-6401-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!