The health, environmental and socio-economic issues related to the massive use of plant protection products are a concern for all the stakeholders involved in the agricultural sector. These stakeholders, including farmers and territorial actors, have expressed a need for decision-support tools for the management of diffuse pollution related to plant protection practices and their impacts. To meet the needs expressed by the public authorities and the territorial actors for such decision-support tools, we have developed a technical-economic model "OptiPhy" for risk mitigation based on indicators of pesticide toxicity risk to applicator health (IRSA) and to the environment (IRTE), under the constraint of suitable economic outcomes. This technical-economic optimisation model is based on linear programming techniques and offers various scenarios to help the different actors in choosing plant protection products, depending on their different levels of constraints and aspirations. The health and environmental risk indicators can be broken down into sub-indicators so that management can be tailored to the context. This model for technical-economic optimisation and management of plant protection practices can analyse scenarios for the reduction of pesticide-related risks by proposing combinations of substitution PPPs, according to criteria of efficiency, economic performance and vulnerability of the natural environment. The results of the scenarios obtained on real ITKs in different cropping systems show that it is possible to reduce the PPP pressure (TFI) and reduce toxicity risks to applicator health (IRSA) and to the environment (IRTE) by up to approximately 50 %.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-016-6775-1 | DOI Listing |
J Agric Food Chem
January 2025
College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
Recently, the structural optimization of natural bioactive products has been one of the important ways to discover new pesticide candidates. Based on osthole as a lead compound, herein, a series of new 2-isopropanol-4-methoxy-7-alkyl/aryloxycarbonyl-()-vinyl-2,3-dihydrobenzofuran derivatives were synthesized. Steric configurations of compounds , , , , , , and were confirmed by X-ray monocrystallography.
View Article and Find Full Text PDFScience
January 2025
Center for Global Sustainability, University of Maryland, College Park, MD, USA.
Emissions reductions may be met with relatively small costs.
View Article and Find Full Text PDFArch Virol
January 2025
Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, CS20032, 33882, Villenave d'Ornon Cedex, France.
A novel capulavirus was identified by high-throughput sequencing in four sugar beet (Beta vulgaris L.) plants collected in April 2023 in Normandy (France). The complete genome of 2744 nucleotides (nt) was sequenced and found to have an organization similar to that of known capulaviruses, with which it showed close phylogenetic relationships.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China.
Three aerobic, pink-pigmented, Gram-negative, motile and rod-shaped bacterial strains, designated SD21, SI9 and SB2, were isolated from the phyllosphere of healthy litchis collected from three main producing sites of Guangdong Province, PR China. The 16S rRNA gene analysis showed that strains SD21 and SI9 belonged to the genus (.) with the highest similarity to DSM 19563 (98.
View Article and Find Full Text PDFCrit Rev Anal Chem
January 2025
Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Gliwice, Poland.
Pesticides are commonly found in plant-based foods, which inevitably reduces food quality and poses significant health risks to consumers. The extensive variety of crops and the wide range of pesticides used means that no single analytical approach can provide clear and comprehensive information on the pesticide-protection status of a crop. Since most pesticide analyses in food rely on chromatographic techniques combined with various MS platforms, this article focuses exclusively on LC-MS and GC-MS system methodologies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!