Ionotropic NMDA and AMPA glutamate receptors (iGluRs) play important roles in synaptic function under physiological and pathological conditions. iGluRs sub-synaptic localization and subunit composition are dynamically regulated by activity-dependent insertion and internalization. However, understanding the impact on synaptic transmission of changes in composition and localization of iGluRs is difficult to address experimentally. To address this question, we developed a detailed computational model of glutamatergic synapses, including spine and dendritic compartments, elementary models of subtypes of NMDA and AMPA receptors, glial glutamate transporters, intracellular calcium and a calcium-dependent signaling cascade underlying the development of long-term potentiation (LTP). These synapses were distributed on a neuron model and numerical simulations were performed to assess the impact of changes in composition and localization (synaptic vs extrasynaptic) of iGluRs on synaptic transmission and plasticity following various patterns of presynaptic stimulation. In addition, the effects of various pharmacological compounds targeting NMDARs or AMPARs were determined. Our results showed that changes in NMDAR localization have a greater impact on synaptic plasticity than changes in AMPARs. Moreover, the results suggest that modulators of AMPA and NMDA receptors have differential effects on restoring synaptic plasticity under different experimental situations mimicking various human diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCBB.2016.2561932DOI Listing

Publication Analysis

Top Keywords

impact synaptic
12
localization subunit
8
subunit composition
8
glutamate receptors
8
synaptic function
8
nmda ampa
8
synaptic transmission
8
changes composition
8
composition localization
8
synaptic plasticity
8

Similar Publications

Impacts of hnRNP A1 Splicing Inhibition on the Brain Remyelination Proteome.

J Neurochem

January 2025

Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.

Oligodendrocytes, the myelinating cells in the central nervous system, are implicated in several neurological disorders marked by dysfunctional RNA-binding proteins (RBPs). The present study aimed at investigating the role of hnRNP A1 in the proteome of the corpus callosum, prefrontal cortex, and hippocampus of a murine cuprizone-induced demyelination model. Right after the cuprizone insult, we administered an hnRNP A1 splicing activity inhibitor and analyzed its impact on brain remyelination by nanoESI-LC-MS/MS label-free proteomic analysis to assess the biological processes affected in these brain regions.

View Article and Find Full Text PDF

Introduction: Access to electric light has exposed living organisms to varying intensities of light throughout the 24 h day. Dim light at night (DLAN) is an inappropriate signal for the biological clock, which is responsible for the circadian organization of physiology. During the gestational period, physiological adaptations occur to ensure a successful pregnancy and optimal fetal development.

View Article and Find Full Text PDF

The Histone Lysine Demethylase KDM7A Contributes to Reward Memory via Fscn1-Induced Synaptic Plasticity in the Medial Prefrontal Cortex.

Adv Sci (Weinh)

January 2025

College of Forensic Medicine, Key Laboratory of National Health Commission for Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.

Lysine demethylase 7A (KDM7A) catalyzes the removal of dimethylation from histone H3 lysine 9 and lysine 27, both of which are associated with transcription repression. Previous study indicates that Kdm7a mRNA in the medial prefrontal cortex (mPFC) increases after drug exposure, yet its role in drug-related behaviors is largely unknown. In a morphine-conditioned place preference (CPP) paradigm, these findings reveal a specific increase of Kdm7a expression in the mPFC 7 days after drug withdrawal.

View Article and Find Full Text PDF

Given the influence of cognitive abilities on life outcomes, there is inherent value in identifying genes involved in controlling learning and memory. Further, cognitive dysfunction is a core feature of many neuropsychiatric disorders. Here, we use a combinatory in silico approach to identify human gene targets that will have an especially high likelihood of individually and directly impacting cognition.

View Article and Find Full Text PDF

DNA methylation, histone acetylation in the regulation of memory and its modulation during aging.

Front Aging

January 2025

Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India.

Memory formation is associated with constant modifications of neuronal networks and synaptic plasticity gene expression in response to different environmental stimuli and experiences. Dysregulation of synaptic plasticity gene expression affects memory during aging and neurodegenerative diseases. Covalent modifications such as methylation on DNA and acetylation on histones regulate the transcription of synaptic plasticity genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!