Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A computational molecular model of a truncated keratin protofibril (8 chains of hair keratin, PDB provided in Supplementary material) was used, to run a series of steered molecular dynamics simulations obtaining strain-stress curves. These results were compared with experimental mechanical data on hair fibers. Our data demonstrate that the molecular dynamics simulations can model hair mechanical properties. Simulations done in vacuum showed a better agreement with experimental Young's Modulus (YM) values. The role of hydrogen bonds and the secondary structure of keratin on the mechanical properties was evaluated in detail. The incubation with a fragment of one surfactant protein, the SPD-2 peptide (QAAFSQ), showed the improvement of YM of the hair keratin either by simulations and experimental data. For the first, our research provides mechanistic insights on mechanical microscopic properties of keratin protofibrils through molecular dynamics simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2016.05.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!