In plants, the partitioning of carbon resources between growth and defense is detrimental for their development. From a metabolic viewpoint, growth is mainly related to primary metabolism including protein, amino acid and lipid synthesis, whereas defense is based notably on the biosynthesis of a myriad of secondary metabolites. Environmental factors, such as nitrate fertilization, impact the partitioning of carbon resources between growth and defense. Indeed, experimental data showed that a shortage in the nitrate fertilization resulted in a reduction of the plant growth, whereas some secondary metabolites involved in plant defense, such as phenolic compounds, accumulated. Interestingly, sucrose, a key molecule involved in the transport and partitioning of carbon resources, appeared to be under homeostatic control. Based on the inflow/outflow properties of sucrose homeostatic regulation we propose a global model on how the diversion of the primary carbon flux into the secondary phenolic pathways occurs at low nitrate concentrations. The model can account for the accumulation of starch during the light phase and the sucrose remobilization by starch degradation during the night. Day-length sensing mechanisms for variable light-dark regimes are discussed, showing that growth is proportional to the length of the light phase. The model can describe the complete starch consumption during the night for plants adapted to a certain light/dark regime when grown on sufficient nitrate and can account for an increased accumulation of starch observed under nitrate limitation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2016.05.008 | DOI Listing |
Cattail (), a wetland plant, is emerging as a sustainable materials resource. While most of the species are proven to be a fiber-yielding crop, exhibits the broadest leaf size (5-30 mm), yields highest amount of fiber (≈190.9 g), and captures maximum CO (≈1270 g).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mathematical Sciences, Faculty of Science, Somali National University, Mogadishu Campus, Mogadishu, Somalia.
In recent years, machine learning has gained substantial attention for its ability to predict complex chemical and biological properties, including those of pharmaceutical compounds. This study proposes a machine learning-based quantitative structure-property relationship (QSPR) model for predicting the physicochemical properties of anti-arrhythmia drugs using topological descriptors. Anti-arrhythmic drug development is challenging due to the complex relationship between chemical structure and drug efficacy.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
Studies regarding geochemical partitioning and leaching behavior of Hofmeister ions, which is considered as a risk/causative factor for chronic kidney disease of unknown etiology (CKDu), are scarce. Therefore, Hofmeister ions' leaching behavior of partially weathered rocks from CKDu endemic (Girandurukotte) and non-endemic (Sewanagala) areas, Sri Lanka were compared. Rock mineralogy was analyzed using X-ray Diffraction, and total ion contents were determined using alkaline and acid digestions.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Chemistry, University of Sherbrooke, 2500, Blvd de l'Université, Sherbrooke, QC J1K 2R1, Canada.
This study delves into the distinctive selective property exhibited by a non-conjugated cholesterol-based polymer, poly(CEM--EHA), in sorting semiconducting single-walled carbon nanotubes (s-SWCNTs) within isooctane. Comprised of 11 repeating units of cholesteryloxycarbonyl-2-hydroxy methacrylate (CEM) and 7 repeating units of 2-ethylhexyl acrylate (EHA), this non-conjugated polymer demonstrates robust supramolecular interactions across the sp surface structure of carbon nanotubes and graphene. When coupled with the Double Liquid-Phase Extraction (DLPE) technology, the polymer effectively segregates s-SWCNTs into the isooctane phase (nonpolar) while excluding metallic SWCNTs (m-SWCNTs) in the water phase (polar).
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Natural Products Research Center of Guizhou Province, Guiyang, China; Guizhou Medical University Key Laboratory of Chemistry for Natural Products, Guiyang, China. Electronic address:
The eco-stoichiometry of Ca/Cd in soil significantly affects Cd uptake and accumulation by plants in carbonate regions. In this study, the physiological responses and detoxification mechanisms of Capsicum annuum L. (capsicum) were investigated based on the eco-stoichiometric relationship of Ca/Cd in production substrates under varying pH levels (5, 6, and 7).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!