The droplet interface bilayer (DIB) is a promising technique for assembling lipid membrane-based materials and devices using water droplets in oil, but it has largely been limited to laboratory environments due to its liquid construction. With a vision to transform this lab-based technique into a more-durable embodiment, we investigate the use of a polymer-based organogel to encapsulate DIBs within a more-solid material matrix to improve their handling and portability. Specifically, a temperature-sensitive organogel formed from hexadecane and poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) triblock copolymer is used to replace the liquid solvent that surrounds the lipid-coated droplets to establish a novel liquid-in-gel DIB system. Through specific capacitance measurements and single-channel recordings of the pore forming peptide alamethicin, we verify that the structural and functional membrane properties are retained when DIBs are assembled within SEBS organogel. In addition, we demonstrate that organogel encapsulation offers improved handling of droplets and yields DIBs with a near 3× higher bilayer durability, as quantified by the lateral acceleration required to rupture the membrane, compared to liquid-in-liquid DIBs in oil. This encapsulated DIB system provides a barrier against contamination from the environment and offers a new material platform for supporting multilayered DIB-based devices as well as other digital microfluidic systems that feature water droplets in oil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6lc00391e | DOI Listing |
Nat Commun
January 2025
The Institute of Technological Sciences, Wuhan University, Wuhan, China.
Flexible perovskite solar cells (F-PSCs) are appealing for their flexibility and high power-to-weight ratios. However, the fragile grain boundaries (GBs) in perovskite films can lead to stress and strain cracks under bending conditions, limiting the performance and stability of F-PSCs. Herein, we show that the perovskite film can facilely achieve in situ bifacial capping via introducing 4-(methoxy)benzylamine hydrobromide (MeOBABr) as the precursor additive.
View Article and Find Full Text PDFSmall
December 2024
School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China.
Fiber strain sensors show good application potential in the field of wearable smart fabrics and equipment because of their characteristics of easy deformation and weaving. However, the integration of fiber strain sensors with sensitive response, good stretchability, and effective practical application remains a challenge. Herein, this paper proposes a new strategy based on 3D stress complementation through pre-stretching and swelling processes, and the polydimethylsiloxane (PDMS)/silver nanoparticle (AgNPs)/MXene/carbon nanotubes (CNTs) fiber sensor with the bilayer labyrinthian wrinkles conductive network on the PU fiber surface is fabricated.
View Article and Find Full Text PDFNanophotonics
March 2024
Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China.
Radiative cooling technology with zero-energy consumption and zero-carbon emission has drawn enormous attention. However, the high-cost manufacture, limited scalability, and narrow application scopes remain major impediments to radiative cooling commercialization. Here, we present a bilayer PDMS/nanoPE fabricated by an automatic film applicator for high-performance passive daytime radiative cooling.
View Article and Find Full Text PDFNat Commun
December 2024
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China.
While hydrogel-based flexible sensors find extensive applications in fields such as medicine and robotics, their performance can be hindered by the rapid evaporation of water, leading to diminished sensitivity and mechanical durability. Despite the exploration of some effective solutions, such as introducing organic solvents, electrolytes, and elastomer composites, these approaches still suffer from problems including diminished conductivity, interface misalignment, and insufficient protection under dynamic conditions. Inspired by cell membrane structures, we developed an adaptive lipid-integrated bilayer coating (ALIBC) to enhance water retention in hydrogel-based sensors.
View Article and Find Full Text PDFSci Technol Adv Mater
October 2024
Department of Mechanical Engineering, Indian Institute of Technology, Jodhpur, India.
3D printing has emerged as a highly efficient process for fabricating electrodes in hydrogen evolution through water splitting, whereas metals are the most popular choice of materials in hydrogen evolution reactions (HER) due to their catalytic activity. However, current 3D printing solutions face challenges, including high cost, low surface area, and sub-optimal performance. In this work, we introduce metal-deposited 3D printed pyrolytic carbon (PyC) as a facile and cost-effective HER electrode.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!