A commercial computed radiography (CR) system was studied as an option for quantitative dosimetry quality assurance of external radiotherapy beams. Following the examination of influencing quantities, practical measurement procedures are discussed. Corrections were derived for image fading, an observed long-term response drift and the image length scale, which was found to be off by up to 2-3%. It is known that energy dependence is important for CR measurements. Therefore, signal-to-dose calibration curves and the energy dependence of the response were studied extensively using multiple photon and electron beam qualities. Doses which yield the same signal vary by up to tens of percent for different beam qualities. Results on the directional response of the plates are presented. It was found that rotations of up to 30° to 40° relative to perpendicular irradiation yield no significant change in response. Finally, the homogeneity of the response over the measurement region was studied for electrons and photons and a correction method is described. In summary, relative dose measurements with uncertainties of a few percent are feasible in regions of constant beam energy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0031-9155/61/11/4019 | DOI Listing |
Vet Res
January 2025
Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA.
Cranioventral pulmonary consolidation (CVPC) is a common lesion observed in the lungs of slaughtered pigs, often associated with Mycoplasma (M.) hyopneumoniae infection. There is a need to implement simple, fast, and valid CVPC scoring methods.
View Article and Find Full Text PDFBMC Cancer
January 2025
The Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.
Background And Objectives: Accurate classification of lymphadenopathy is essential for determining the pathological nature of lymph nodes (LNs), which plays a crucial role in treatment selection. The biopsy method is invasive and carries the risk of sampling failure, while the utilization of non-invasive approaches such as ultrasound can minimize the probability of iatrogenic injury and infection. With the advancement of artificial intelligence (AI) and machine learning, the diagnostic efficiency of LNs is further enhanced.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Data Science, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran.
Background: Melanoma is a highly aggressive skin cancer, where early and accurate diagnosis is crucial to improve patient outcomes. Dermoscopy, a non-invasive imaging technique, aids in melanoma detection but can be limited by subjective interpretation. Recently, machine learning and deep learning techniques have shown promise in enhancing diagnostic precision by automating the analysis of dermoscopy images.
View Article and Find Full Text PDFNeuroinformatics
January 2025
Neuro-Electronics Research Flanders, Kapeldreef 75, Leuven, 3001, Belgium.
The brain is composed of a dense and ramified vascular network of arteries, veins and capillaries of various sizes. One way to assess the risk of cerebrovascular pathologies is to use computational models to predict the physiological effects of reduced blood supply and correlate these responses with observations of brain damage. Therefore, it is crucial to establish a detailed 3D organization of the brain vasculature, which could be used to develop more accurate in silico models.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Department of Neurosurgery, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy.
To explore temporal dynamics of cerebral herniation through the calvarial defect after decompressive craniectomy. To investigate patterns of hemispheric asymmetry in ischemic stroke and traumatic brain injury after decompressive craniectomy.To assess clinical implications of hemispheric asymmetry evaluation in order to minimize cranioplasty complications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!