Molecular Origins of Mesoscale Ordering in a Metalloamphiphile Phase.

ACS Cent Sci

Chemical Sciences and Engineering Division, Argonne National Laboratory , Argonne, Illinois 60439, United States.

Published: December 2015

Controlling the assembly of soft and deformable molecular aggregates into mesoscale structures is essential for understanding and developing a broad range of processes including rare earth extraction and cleaning of water, as well as for developing materials with unique properties. By combined synchrotron small- and wide-angle X-ray scattering with large-scale atomistic molecular dynamics simulations we analyze here a metalloamphiphile-oil solution that organizes on multiple length scales. The molecules associate into aggregates, and aggregates flocculate into meso-ordered phases. Our study demonstrates that dipolar interactions, centered on the amphiphile headgroup, bridge ionic aggregate cores and drive aggregate flocculation. By identifying specific intermolecular interactions that drive mesoscale ordering in solution, we bridge two different length scales that are classically addressed separately. Our results highlight the importance of individual intermolecular interactions in driving mesoscale ordering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4827664PMC
http://dx.doi.org/10.1021/acscentsci.5b00306DOI Listing

Publication Analysis

Top Keywords

mesoscale ordering
12
length scales
8
intermolecular interactions
8
molecular origins
4
mesoscale
4
origins mesoscale
4
ordering metalloamphiphile
4
metalloamphiphile phase
4
phase controlling
4
controlling assembly
4

Similar Publications

Hidden domain boundary dynamics toward crystalline perfection.

Proc Natl Acad Sci U S A

January 2025

Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305.

A central paradigm of nonequilibrium physics concerns the dynamics of heterogeneity and disorder, impacting processes ranging from the behavior of glasses to the emergent functionality of active matter. Understanding these complex mesoscopic systems requires probing the microscopic trajectories associated with irreversible processes, the role of fluctuations and entropy growth, and the timescales on which nonequilibrium responses are ultimately maintained. Approaches that illuminate these processes in model systems may enable a more general understanding of other heterogeneous nonequilibrium phenomena, and potentially define ultimate speed and energy cost limits for information processing technologies.

View Article and Find Full Text PDF

Uniform single-crystal mesoporous metal-organic frameworks.

Nat Chem

January 2025

Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China.

The synthesis of mesoporous metal-organic frameworks (meso-MOFs) is desirable as these materials can be used in various applications. However, owing to the imbalance in structural tension at the micro-scale (MOF crystallization) and the meso-scales (assembly of micelles with MOF subunits), the formation of single-crystal meso-MOFs is challenging. Here we report the preparation of uniform single-crystal meso-MOF nanoparticles with ordered mesopore channels in microporous frameworks with definite arrangements, through a cooperative assembly method co-mediated by strong and weak acids.

View Article and Find Full Text PDF

Most of the recent work in psychedelic neuroscience has been done using noninvasive neuroimaging, with data recorded from the brains of adult volunteers under the influence of a variety of drugs. While these data provide holistic insights into the effects of psychedelics on whole-brain dynamics, the effects of psychedelics on the mesoscale dynamics of neuronal circuits remain much less explored. Here, we report the effects of the serotonergic psychedelic N,N-diproptyltryptamine (DPT) on information-processing dynamics in a sample of in vitro organotypic cultures of cortical tissue from postnatal rats.

View Article and Find Full Text PDF

CrCoNi medium-entropy alloys (MEAs), characterised by their high configurational entropies, have become a research hotspot in materials science. Recent studies have indicated that MEAs exhibit short-range order (SRO), which affects their deformation mechanisms. In this study, the micro-mechanisms of SRO within the framework of mesoscale continuum mechanics are mathematically evaluated using an advanced, non-local crystal plasticity constitutive framework.

View Article and Find Full Text PDF

The posterior parietal cortex () in mice has various functions including multisensory integration, vision-guided behaviors, working memory, and posture control. However, an integrated understanding of these functions and their cortical localizations in and around the PPC and higher visual areas (), has not been completely elucidated. Here we simultaneously imaged the activity of thousands of neurons within a 3 × 3 mm field-of-view, including eight cortical areas around the PPC, during behavior with a two-photon mesoscope.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!