Self-Assembled Multifunctional Hybrids: Toward Developing High-Performance Graphene-Based Architectures for Energy Storage Devices.

ACS Cent Sci

Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials (AIIM) Facility, University of Wollongong, Innovation Campus, North Wollongong, New South Wales 2522, Australia.

Published: July 2015

The prospect of developing multifunctional flexible three-dimensional (3D) architectures based on integrative chemistry for lightweight, foldable, yet robust, electronic components that can turn the many promises of graphene-based devices into reality is an exciting direction that has yet to be explored. Herein, inspired by nature, we demonstrate that through a simple, yet novel solvophobic self-assembly processing approach, nacre-mimicking, layer-by-layer grown, hybrid composite materials (consisting of graphene oxide, carbon nanotubes, and conducting polymers) can be made that can incorporate many of the exciting attributes of graphene into real world materials. The as-produced, self-assembled 3D multifunctional architectures were found to be flexible, yet mechanically robust and tough (Young's modulus in excess of 26.1 GPa, tensile strength of around 252 MPa, and toughness of 7.3 MJ m(-3)), and exhibited high native electrical conductivity (38700 S m(-1)) and unrivalled volumetric capacitance values (761 F cm(-3)) with excellent cyclability and rate performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4827461PMC
http://dx.doi.org/10.1021/acscentsci.5b00189DOI Listing

Publication Analysis

Top Keywords

self-assembled multifunctional
8
multifunctional hybrids
4
hybrids developing
4
developing high-performance
4
high-performance graphene-based
4
graphene-based architectures
4
architectures energy
4
energy storage
4
storage devices
4
devices prospect
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!