The primary sweet sensor in mammalian taste cells for sugars and noncaloric sweeteners is the heteromeric combination of type 1 taste receptors 2 and 3 (T1R2+T1R3, encoded by Tas1r2 and Tas1r3 genes). However, in the absence of T1R2+T1R3 (e.g., in Tas1r3 KO mice), animals still respond to sugars, arguing for the presence of T1R-independent detection mechanism(s). Our previous findings that several glucose transporters (GLUTs), sodium glucose cotransporter 1 (SGLT1), and the ATP-gated K(+) (KATP) metabolic sensor are preferentially expressed in the same taste cells with T1R3 provides a potential explanation for the T1R-independent detection of sugars: sweet-responsive taste cells that respond to sugars and sweeteners may contain a T1R-dependent (T1R2+T1R3) sweet-sensing pathway for detecting sugars and noncaloric sweeteners, as well as a T1R-independent (GLUTs, SGLT1, KATP) pathway for detecting monosaccharides. However, the T1R-independent pathway would not explain responses to disaccharide and oligomeric sugars, such as sucrose, maltose, and maltotriose, which are not substrates for GLUTs or SGLT1. Using RT-PCR, quantitative PCR, in situ hybridization, and immunohistochemistry, we found that taste cells express multiple α-glycosidases (e.g., amylase and neutral α glucosidase C) and so-called intestinal "brush border" disaccharide-hydrolyzing enzymes (e.g., maltase-glucoamylase and sucrase-isomaltase). Treating the tongue with inhibitors of disaccharidases specifically decreased gustatory nerve responses to disaccharides, but not to monosaccharides or noncaloric sweeteners, indicating that lingual disaccharidases are functional. These taste cell-expressed enzymes may locally break down dietary disaccharides and starch hydrolysis products into monosaccharides that could serve as substrates for the T1R-independent sugar sensing pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4889361 | PMC |
http://dx.doi.org/10.1073/pnas.1520843113 | DOI Listing |
Zhongguo Zhong Yao Za Zhi
December 2024
Anhui University of Chinese Medicine Hefei 230012, China Anhui Province Key Laboratory of Application and Transformation of Traditional Chinese Medicine in Prevention and Treatment of Major Pulmonary Diseases Hefei 230031, China Key Laboratory of Xin'an Medicine, Ministry of Education Hefei 230038, China.
This study aimed to investigate the mechanism by which Shegan Mahuang Decoction(SGMH) and its bitter Chinese herbs(BCHs) regulated the lung-gut axis through the bitter taste receptor 14(TAS2R14)/secretory immunoglobulin A(SIgA)/thymic stromal lymphopoietin(TSLP) to intervene in the epithelial cell barrier of cold asthma rats. Fifty SD rats were randomly divided into the following five groups: normal group, model group, dexamethasone group, SGMH group, and BCHs group. A 10% ovalbumin(OVA) solution was used to sensitize the rats via subcutaneous injection on both sides of the abdomen and groin, combined with 2% OVA atomization and cold(2-4 ℃) stimulation to induce a cold asthma model in rats.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany.
Tracheal tuft cells shape immune responses in the airways. While some of these effects have been attributed to differential release of either acetylcholine, leukotriene C4 and/or interleukin-25 depending on the activating stimuli, tuft cell-dependent mechanisms underlying the recruitment and activation of immune cells are incompletely understood. Here we show that Pseudomonas aeruginosa infection activates mouse tuft cells, which release ATP via pannexin 1 channels.
View Article and Find Full Text PDFJ Neurosci
January 2025
Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA, 27599.
Blunted sensitivity to ethanol's aversive effects can increase motivation to consume ethanol; yet, the neurobiological circuits responsible for encoding these aversive properties are not fully understood. Plasticity in cells projecting from the anterior insular cortex (aIC) to the basolateral amygdala (BLA) is critical for taste aversion learning and retrieval, suggesting this circuit's potential involvement in modulating the aversive properties of ethanol. Here, we tested the hypothesis that GABAergic currents onto aIC-BLA projections would be facilitated as a consequence of retrieval of an ethanol-conditioned taste aversion (CTA).
View Article and Find Full Text PDFFood Res Int
January 2025
State Key Laboratory of Food Science and Resources, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Guangdong Engineering Research Center of High-Value Utilization and Equipment Development of Marine Biological Resources, Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, China; Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang 31200, China; National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing 646000, Zhejiang, China. Electronic address:
To explore the mechanism of Virgibacillus proteases on hydrolysis of shrimp myofibrillar protein (SMP) and formation of volatile compounds, the fermented broth of Virgibacillus halodenitrificans was purified and the protease was identified as peptidase S8. The enzyme had optimum activity at pH 7.0-8.
View Article and Find Full Text PDFN Engl J Med
January 2025
From Tel Aviv Sourasky Medical Center (Y.C.C., I.A.), and the Faculty of Medical and Health Sciences, Tel Aviv University (Y.C.C., H.M., I.A.), Tel Aviv, Chaim Sheba Medical Center, Ramat Gan (H.M.), and Hadassah Hebrew University Medical Center, Jerusalem (M.G.) - all in Israel; McGill University and McGill University Health Centre, Montreal (M.S.), and Alberta Health Services, Edmonton (M.P.C.) - all in Canada; Samsung Medical Center, Sungkyunkwan University School of Medicine (K.K.), Seoul St. Mary's Hospital, Catholic University of Korea (C.-K.M.), and Seoul National University College of Medicine (S.-S.Y.) - all in Seoul, South Korea; Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Sanitaria Valdecilla, Universidad de Cantabria, Santander (E.M.O.), Cancer Center Clínica Universidad de Navarra, Center for Applied Medical Research, Pamplona (P.R.-O.), Institut Català d'Oncologia, Josep Carreras Leukemia Research Institute, and the Hospital Germans Trias i Pujol, Barcelona (A.O.), START Madrid-Fundación Jiménez Díaz Early Phase Unit, University Hospital Fundación Jiménez Díaz, Madrid (D.M.), and the University Hospital of Salamanca, Institute for Biomedical Research of Salamanca, the Salamanca Cancer Research Center, and Centro de Investígación Biomédica en Red Cáncer, Salamanca (M.-V.M.) - all in Spain; Janssen Research and Development, Spring House, PA (N.A.Q.C., A.K., M.K., M.R.P., E.S., B.H., J.V., A.B.); and Janssen Research and Development, Allschwil, Switzerland (L.D.S.).
Background: Talquetamab (anti-G protein-coupled receptor family C group 5 member D) and teclistamab (anti-B-cell maturation antigen) are bispecific antibodies that activate T cells by targeting CD3 and that have been approved for the treatment of triple-class-exposed relapsed or refractory multiple myeloma.
Methods: We conducted a phase 1b-2 study of talquetamab plus teclistamab in patients with relapsed or refractory multiple myeloma. In phase 1, we investigated five dose levels in a dose-escalation study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!