Motivation: Vaccines represent the most effective and cost-efficient weapons against a wide range of diseases. Nowadays new generation vaccines based on subunit antigens reduce adverse effects in high risk individuals. However, vaccine antigens are often poor immunogens when administered alone. Adjuvants represent a good strategy to overcome such hurdles, indeed they are able to: enhance the immune response; allow antigens sparing; accelerate the specific immune response; and increase vaccine efficacy in vulnerable groups such as newborns, elderly or immuno-compromised people. However, due to safety concerns and adverse reactions, there are only a few adjuvants approved for use in humans. Moreover, in practice current adjuvants sometimes fail to confer adequate stimulation. Hence, there is an imperative need to develop novel adjuvants that overcome the limitations of the currently available licensed adjuvants.

Results: We developed a computational framework that provides a complete pipeline capable of predicting the best citrus-derived adjuvants for enhancing the immune system response using, as a target disease model, influenza A infection. In silico simulations suggested a good immune efficacy of specific citrus-derived adjuvant (Beta Sitosterol) that was then confirmed in vivoAvailability: The model is available visiting the following URL: http://vaima.dmi.unict.it/AdjSim

Contact: francesco.pappalardo@unict.it; fp@francescopappalardo.net.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btw293DOI Listing

Publication Analysis

Top Keywords

immune system
8
immune response
8
adjuvants
6
immune
5
computational model
4
model predict
4
predict immune
4
system activation
4
activation citrus-derived
4
citrus-derived vaccine
4

Similar Publications

Resistance mechanisms to immune checkpoint inhibitors: updated insights.

Mol Cancer

January 2025

Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.

The last decade has witnessed unprecedented succusses with the use of immune checkpoint inhibitors in treating cancer. Nevertheless, the proportion of patients who respond favorably to the treatment remained rather modest, partially due to treatment resistance. This has fueled a wave of research into potential mechanisms of resistance to immune checkpoint inhibitors which can be classified into primary resistance or acquired resistance after an initial response.

View Article and Find Full Text PDF

Biometallic ions and derivatives: a new direction for cancer immunotherapy.

Mol Cancer

January 2025

Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 41001l, China.

Biometallic ions play a crucial role in regulating the immune system. In recent years, cancer immunotherapy has become a breakthrough in cancer treatment, achieving good efficacy in a wide range of cancers with its specificity and durability advantages. However, existing therapies still face challenges, such as immune tolerance and immune escape.

View Article and Find Full Text PDF

Signatures of H3K4me3 modification predict cancer immunotherapy response and identify a new immune checkpoint-SLAMF9.

Respir Res

January 2025

Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.

H3 lysine 4 trimethylation (H3K4me3) modification and related regulators extensively regulate various crucial transcriptional courses in health and disease. However, the regulatory relationship between H3K4me3 modification and anti-tumor immunity has not been fully elucidated. We identified 72 independent prognostic genes of lung adenocarcinoma (LUAD) whose transcriptional expression were closely correlated with known 27 H3K4me3 regulators.

View Article and Find Full Text PDF

Size effect-based improved antioxidant activity of selenium nanoparticles regulating Anti-PI3K-mTOR and Ras-MEK pathways for treating spinal cord injury to avoid hormone shock-induced immunosuppression.

J Nanobiotechnology

January 2025

Department of Orthopedics, Zhuhai Medical College (Zhuhai People's Hospital), State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Chemistry and Materials Science, Jinan University, Zhuhai, 519000, China.

Spinal cord injury (SCI) is a critical condition affecting the central nervous system that often has permanent and debilitating consequences, including secondary injuries. Oxidative damage and inflammation are critical factors in secondary pathological processes. Selenium nanoparticles have demonstrated significant antioxidative and anti-inflammatory properties via a non-immunosuppressive pathway; however, their clinical application has been limited by their inadequate stability and functionality to cross the blood-spinal cord barrier (BSCB).

View Article and Find Full Text PDF

Purpose: This study aimed to investigate the efficacy of measuring lymph node size on preoperative CT imaging to predict pathological lymph node metastasis in patients with colon cancer to enhance diagnostic accuracy and improve treatment planning by establishing more reliable assessment methods for lymph node metastasis.

Methods: We retrospectively analyzed 1,056 patients who underwent colorectal resection at our institution between January 2004 and March 2020. From this cohort, 694 patients with resectable colon cancer were included in the study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!