A chiral iridium(I) N-heterocyclic carbene complex was reported for the first time as the catalyst in the highly enantioselective intramolecular allylic amination reaction. The current method provides facile access to biologically important enantioenriched indolopiperazinones and piperazinones in good yields (74-91 %) and excellent enantioselectivities (92-99 % ee). Preliminary mechanistic investigations reveal that the C-H activation occurs at the position ortho to the N-aryl group of the ligand.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201603266 | DOI Listing |
Chemistry
December 2024
Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1, Scotland, 1XL, U.K.
Hydrogen isotope exchange (HIE) via C-H activation constitutes an efficient method for the synthesis of isotopically-enriched compounds, which are crucial components of the drug discovery process and are extensively employed in mechanistic studies. A series of iridium(I) complexes, bearing a chelating phosphine-N-heterocyclic carbene ligand, was designed and synthesized for application in the catalytic HIE of challenging N- and O-aryl carbamates. A broad range of substrates were labeled efficiently, and applicability to biologically-relevant systems was demonstrated by labeling an ʟ-tyrosine-derived carbamate with excellent levels of deuterium incorporation.
View Article and Find Full Text PDFThe title compound, [Ir(CH)(CHN)(CHP)]BF, a new triazole-based N-heterocyclic carbene iridium(I) cationic complex with a tetra-fluorido-borate counter-anion, crystallizes with two cations and two anions in the asymmetric unit of space group . The Ir centers of the cations have distorted square-planar conformations, formed by a bidentate (η + η) cyclo-octa-1,5-diene (COD) ligand, an N-heterocyclic carbene and a tri-phenyl-phosphane ligand with the NHC carbon atom and P atom being . In the extended structure, non-classical C-H⋯F hydrogen bonds, one of which is notably short (H⋯F = 2.
View Article and Find Full Text PDFIUCrdata
October 2023
Department of Chemistry, Millersville University, Millersville, PA 17551, USA.
The synthesis and crystal structure of a new triazole-based N-heterocyclic carbene iridium(I) cationic complex with a tetra-fluorido-borate counter-anion and solvating di-chloro-methane, [Ir(CH)(CHN)(CHP)]BF·1.5CHCl, is reported. The Ir center of the cationic complex has a distorted square-planar conformation, formed by a bidentate cyclo-octa-1,5-diene (COD) ligand, an N-heterocyclic carbene, and a triphenylphosphane ligand.
View Article and Find Full Text PDFIUCrdata
January 2023
Department of Chemistry, Millersville University, Millersville, PA 17551, USA.
A new triazole-based N-heterocyclic carbene iridium(I) cationic complex with a tetra-fluorido-borate counter-anion, [Ir(CH)(CHP)(CHN)]BF·0.8CHCl, has been synthesized and structurally characterized. The central Ir atom of the cationic complex has a distorted square-planar coordination environment, formed by a bidentate cyclo-octa-1,5-diene (COD) ligand, an N-heterocyclic carbene, and a tri-phenyl-phosphane ligand.
View Article and Find Full Text PDFMolecules
November 2022
Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain.
Iridium(I) compounds featuring bridge-functionalized bis-NHC ligands (NHC = N-heterocyclic carbene), [Ir(cod)(bis-NHC)] and [Ir(CO)(bis-NHC)], have been prepared from the appropriate carboxylate- or hydroxy-functionalized bis-imidazolium salts. The related complexes [Ir(cod)(NHC)] and [IrCl(cod)(NHC)(cod)] have been synthesized from a 3-hydroxypropyl functionalized imidazolium salt. These complexes have been shown to be robust catalysts in the oxidative dehydrogenation of glycerol to lactate (LA) with dihydrogen release.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!