A De Novo Designed Coiled-Coil Peptide with a Reversible pH-Induced Oligomerization Switch.

Structure

Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, PO Box 124, 221 00 Lund, Sweden. Electronic address:

Published: June 2016

Protein conformational switches have many useful applications but are difficult to design rationally. Here we demonstrate how the isoenergetic energy landscape of higher-order coiled coils can enable the formation of an oligomerization switch by insertion of a single destabilizing element into an otherwise stable computationally designed scaffold. We describe a de novo designed peptide that was discovered to switch between a parallel symmetric pentamer at pH 8 and a trimer of antiparallel dimers at pH 6. The transition between pentamer and hexamer is caused by changes in the protonation states of glutamatic acid residues with highly upshifted pKa values in both oligomer forms. The drastic conformational change coupled with the narrow pH range makes the peptide sequence an attractive candidate for introduction of pH sensing into other proteins. The results highlight the remarkable ability of simple-α helices to self-assemble into a vast range of structural states.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.str.2016.03.027DOI Listing

Publication Analysis

Top Keywords

novo designed
8
oligomerization switch
8
designed coiled-coil
4
coiled-coil peptide
4
peptide reversible
4
reversible ph-induced
4
ph-induced oligomerization
4
switch protein
4
protein conformational
4
conformational switches
4

Similar Publications

Basic Considerations for Data Pooling Strategy in Multi-Regional Clinical Trials (MRCTs).

Ther Innov Regul Sci

January 2025

Department of Biostatistics, School of Public Health, Peking University, Beijing, China.

The National Medical Products Administration of China has been implementing ICH E17, which describes the general principles for planning and designing of multi-regional clinical trials (MRCTs), yet there are several ambiguities in the execution and conduct remains in China or East Asia. In specific, pooling strategy, effect modifiers (EMs), statistical analysis, sample size allocation and their impact in alignment with global trial remains a challenge. In this paper, we explore on the criteria mentioned above under the context of China.

View Article and Find Full Text PDF

Background And Rationale: In-stent restenosis (ISR) remains the leading cause of treatment failure following percutaneous coronary intervention (PCI) with contemporary drug-eluting stents. Especially in small caliber coronary arteries, restenosis is common following PCI and represents a treatment challenge. Drug-coated balloons (DCB) are an attractive alternative to stents for treatment of both ISR and small vessel disease.

View Article and Find Full Text PDF

Intranasal oxytocin for apathy in people with frontotemporal dementia (FOXY): a multicentre, randomised, double-blind, placebo-controlled, adaptive, crossover, phase 2a/2b superiority trial.

Lancet Neurol

February 2025

Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada; Department of Cognitive Neurology, St Joseph's Health Care London, London, ON, Canada. Electronic address:

Background: No treatments exist for apathy in people with frontotemporal dementia. Previously, in a randomised double-blind, placebo-controlled, dose-finding study, intranasal oxytocin administration in people with frontotemporal dementia improved apathy ratings on the Neuropsychiatric Inventory over 1 week and, in a randomised, double-blind, placebo-controlled, crossover study, a single dose of 72 IU oxytocin increased blood-oxygen-level-dependent signal in limbic brain regions. We aimed to determine whether longer treatment with oxytocin improves apathy in people with frontotemporal dementia.

View Article and Find Full Text PDF

Specific Rosetta-based protein-peptide prediction protocol allows the design of novel cholinesterase inhibitor peptides.

Bioorg Chem

January 2025

Laboratorio de Peptidos Bioactivos, Department of Organic Chemistry, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina; National Scientific and Technical Research Council (CONICET), Ministry of Science, Technology and Innovation, Godoy Cruz 2290, Ciudad de Buenos Aires, Argentina. Electronic address:

The search for novel cholinesterase inhibitors is essential for advancing treatments for neurodegenerative disorders such as Alzheimer's disease (AD). In this study, we employed the Rosetta pepspec module, originally developed for designing peptides targeting protein-protein interactions, to design de novo peptides targeting the peripheral aromatic site (PAS) of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). A total of nine peptides were designed for human AChE (hAChE), T.

View Article and Find Full Text PDF

Background: The usual antithrombotic treatment for symptomatic intracranial atherosclerotic stenosis (ICAS) consists of dual treatment with clopidogrel and aspirin for 90 days followed by aspirin alone but the risk of recurrent stroke remains high up to 12 months. The Comparison of Anticoagulation and anti-Platelet Therapies for Intracranial Vascular Atherostenosis (CAPTIVA) trial was designed to determine whether other combinations of dual antithrombotic therapy are superior to clopidogrel and aspirin.

Methods: CAPTIVA is an ongoing, prospective, double-blinded, three-arm clinical trial at over 100 sites in the United States and Canada that will randomize 1683 high-risk subjects with a symptomatic infarct attributed to 70-99% stenosis of a major intracranial artery to 12 months of treatment with (1) ticagrelor (180 mg loading dose, then 90 mg twice daily), (2) low-dose rivaroxaban (2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!