Astrocyte Intermediaries of Septal Cholinergic Modulation in the Hippocampus.

Neuron

Laboratory for Experimental Epileptology and Cognition Research, Department of Epileptology, University of Bonn Medical Center, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 25, 53105 Bonn, Germany. Electronic address:

Published: May 2016

The neurotransmitter acetylcholine, derived from the medial septum/diagonal band of Broca complex, has been accorded an important role in hippocampal learning and memory processes. However, the precise mechanisms whereby acetylcholine released from septohippocampal cholinergic neurons acts to modulate hippocampal microcircuits remain unknown. Here, we show that acetylcholine release from cholinergic septohippocampal projections causes a long-lasting GABAergic inhibition of hippocampal dentate granule cells in vivo and in vitro. This inhibition is caused by cholinergic activation of hilar astrocytes, which provide glutamatergic excitation of hilar inhibitory interneurons. These results demonstrate that acetylcholine release can cause slow inhibition of principal neuronal activity via astrocyte intermediaries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2016.04.003DOI Listing

Publication Analysis

Top Keywords

astrocyte intermediaries
8
acetylcholine release
8
intermediaries septal
4
cholinergic
4
septal cholinergic
4
cholinergic modulation
4
modulation hippocampus
4
hippocampus neurotransmitter
4
acetylcholine
4
neurotransmitter acetylcholine
4

Similar Publications

Single-cell sequencing has characterized cell state heterogeneity across diverse healthy and malignant tissues. However, the plasticity or heritability of these cell states remains largely unknown. To address this, we introduce PATH (phylogenetic analysis of trait heritability), a framework to quantify cell state heritability versus plasticity and infer cell state transition and proliferation dynamics from single-cell lineage tracing data.

View Article and Find Full Text PDF

Purpose: In response to hypoxia, sympathetic fibers to the retina activate β-adrenoceptors (β-ARs) that play an important role in the regulation of vascular and neuronal functions. We investigated the role of β3-AR using the mouse model of oxygen-induced retinopathy (OIR).

Methods: Mouse pups were exposed to 75% oxygen at postnatal day 7 (PD7) followed by a return to room air at PD12.

View Article and Find Full Text PDF

Methamphetamine (Meth) use is known to induce complex neuroinflammatory responses, particularly involving astrocytes and microglia. Building upon our previous research, which demonstrated that Meth stimulates astrocytes to release tumor necrosis factor (TNF) and glutamate, leading to microglial activation, this study investigates the role of the anti-inflammatory cytokine interleukin-10 (IL-10) in this process. Our findings reveal that the presence of recombinant IL-10 (rIL-10) counteracts Meth-induced excessive glutamate release in astrocyte cultures, which significantly reduces microglial activation.

View Article and Find Full Text PDF

Glia-Neurons Cross-Talk Regulated Through Autophagy.

Front Physiol

April 2022

Department of Cell Biology and Imaging, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.

Autophagy is a self-degradative process which plays a role in removing misfolded or aggregated proteins, clearing damaged organelles, but also in changes of cell membrane size and shape. The aim of this phenomenon is to deliver cytoplasmic cargo to the lysosome through the intermediary of a double membrane-bound vesicle (autophagosome), that fuses with a lysosome to form autolysosome, where cargo is degraded by proteases. Products of degradation are transported back to the cytoplasm, where they can be re-used.

View Article and Find Full Text PDF

The present paper is the first comparative study on the astroglia of several actinopterygian species at different phylogenetical positions, teleosts (16 species), and non-teleosts (3 species), based on the immunohistochemical staining of GFAP (glial fibrillary acidic protein), the characteristic cytoskeletal intermediary filament protein, and immunohistochemical marker of astroglia. The question was, how the astroglial architecture reflexes the high diversity of this largest vertebrate group. The actinopterygian telencephalon has a so-called 'eversive' development in contrast to the 'evagination' found in sarcopterygii (including tetrapods).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!