Purpose: To measure the biomechanical properties (maximum load, stiffness, and elongation) of the anterolateral ligament (ALL), gracilis, and iliotibial band (ITB) within the same subject.
Methods: Thirteen unpaired knees were used (7 women, 6 men). The donors had a mean age at death of 54 years (range: 37 to 70 years). The mechanical properties of two types of ALL grafts were evaluated: ITB and two-strand gracilis. The mechanical properties of ALL were also measured. Validated methods were used to perform the tensile tests to failure and to record the results. Student's t-test was used to compare the various samples.
Results: The maximum load to failure was 141 N (±40.6) for the ALL, 200.7 N (±48.7) for the gracilis, and 161.1 N (±27.1) for the ITB. Only the gracilis had a significantly higher failure load than ITB and ALL (P = .001 and P = .03). The stiffness was 21 N mm (±8.2) for the ALL, 131.7 N mm (±43.7) for the gracilis, and 39.9 N mm (±6) for the ITB. The elongation at failure was 6.2 mm (±3.2) for the ALL, 19.9 mm (±6.5) for the gracilis, and 20.8 mm (±14.7) for the ITB.
Conclusions: The gracilis had the highest maximum load to failure. The ITB's mechanical properties most closely resemble those of the ALL.
Clinical Relevance: The biomechanical properties of each potential ALL graft can be factored in when deciding which type of graft to use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.arthro.2016.03.004 | DOI Listing |
Sci Rep
December 2024
Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Postbus 513, Eindhoven, 5600 MB, The Netherlands.
Articular cartilage is distinguished by the unique alignment of type II collagen, a feature crucial for its mechanical properties and function. This characteristic organization is established during postnatal development of the tissue, yet the underlying mechanisms remain poorly understood. In this study, a potential mechanism for type II collagen alignment by cartilage-specific growth from within the tissue was investigated.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2024
Institute of Continuum Mechanics and Biomechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Straße 81, Fürth, 90762, Germany. Electronic address:
The mechanical properties of brain and spinal cord tissue have proven to be extremely complex and difficult to assess. Due to the heterogeneous and ultra-soft nature of the tissue, the available literature shows a large variance in mechanical parameters derived from experiments. In this study, we performed a series of indentation experiments to systematically investigate the mechanical properties of porcine spinal cord tissue in terms of their sensitivity to indentation tip diameter, loading rate, holding time, ambient temperature along with cyclic and oscillatory dynamic loading.
View Article and Find Full Text PDFJ Bone Miner Res
December 2024
Division of Endocrinology/Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY.
Opportunistic screening is essential to improve the identification of individuals with osteoporosis. Our group has utilized image texture features to assess bone quality using clinical MRIs. We have previously demonstrated that greater heterogeneity of MRI texture related to history of fragility fractures, lower bone density, and worse microarchitecture.
View Article and Find Full Text PDFJ Orthop Res
December 2024
McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Exercise influences clinical Achilles tendon health in humans, but animal models of exercise-related Achilles tendon changes are lacking. Moreover, previous investigations of the effects of treadmill running exercise on rat Achilles tendon demonstrate variable outcomes. Our objective was to assess the functional, structural, cellular, and biomechanical impacts of treadmill running exercise on rat Achilles tendon with sensitive in and ex vivo approaches.
View Article and Find Full Text PDFVestn Oftalmol
December 2024
Institute of Regenerative Medicine of the Sechenov University, Moscow, Russia.
Unlabelled: The scientific and practical interest in studying the biomechanical characteristics of the lens capsule, on the one hand, is associated with its anatomical significance in modern microinvasive phaco surgery, and on the other hand, with investigation of the mechanisms of lens curvature changes during accommodation. Selective study of the biomechanical properties of the lens capsule aims to identify characteristics of various regions and surfaces of the capsule.
Purpose: This study is a comparative analysis of age-related changes in the biomechanical properties of the anterior (AC) and posterior (PC) lens capsules in humans.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!