Under persistent ER stress, Trypanosoma brucei parasites induce the spliced leader silencing (SLS) pathway. In SLS, transcription of the SL RNA gene, the SL donor to all mRNAs, is extinguished, arresting trans-splicing and leading to programmed cell death (PCD). In this study, we investigated the transcriptome following silencing of SEC63, a factor essential for protein translocation across the ER membrane, and whose silencing induces SLS. The proteome of SEC63-silenced cells was analyzed with an emphasis on SLS-specific alterations in protein expression, and modifications that do not directly result from perturbations in trans-splicing. One such protein identified is an atypical calpain SKCRP7.1/7.2. Co-silencing of SKCRP7.1/7.2 and SEC63 eliminated SLS induction due its role in translocating the PK3 kinase. This kinase initiates SLS by migrating to the nucleus and phosphorylating TRF4 leading to shut-off of SL RNA transcription. Thus, SKCRP7.1 is involved in SLS signaling and the accompanying PCD. The role of autophagy in SLS was also investigated; eliminating autophagy through VPS34 or ATG7 silencing demonstrated that autophagy is not essential for SLS induction, but is associated with PCD. Thus, this study identified factors that are used by the parasite to cope with ER stress and to induce SLS and PCD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mmi.13417 | DOI Listing |
Circ Cardiovasc Interv
January 2025
Centre for Cardiovascular Innovation, University of British Columbia, Vancouver, Canada. (A.H., J.J., S.O., K.M., J.A.L., P.B., D.A.W., S.L.S., J.G.W., J.S.).
Background: Transcatheter heart valve (THV) underexpansion after transcatheter aortic valve replacement may be associated with worse outcomes. THV expansion can be assessed fluoroscopically using a pigtail for calibration; however, the accuracy of this technique specific to transcatheter aortic valve replacement is unknown. We assessed the accuracy and reproducibility of a novel fluoroscopic method to assess THV expansion using the THV commissural post for calibration.
View Article and Find Full Text PDFWater Res
January 2025
Department of Civil and Environmental Engineering, University of Florence, Via di S. Marta, 3, 50139, Firenze, Italy.
The performance of Upflow Anaerobic Sludge Blanket (UASB) bioreactors treating sulfate (SO) -rich effluents depends on multiple factors, including microbial interactions and operational conditions. The high complexity of these systems necessitates the use of mathematical modelling tools to better understand the process and predict the long-term impacts of various operational variables. In this work, a mathematical model describing the long-term operation of a sulfate-fed 2.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Science, Peking University, Beijing 100871, People's Republic of China.
Phycobilisomes (PBS) are the major photosynthetic light-harvesting complexes in cyanobacteria and red algae. While the structures of PBS have been determined in atomic resolutions, how PBS are attached to the reaction centers of photosystems remains less clear. Here, we report that a linker protein (LcpA) is required for the attachment of PBS to photosystem II (PSII) in the cyanobacterium sp.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt.
Sesquiterpene lactones (SLs) are a structurally diverse group of secondary metabolites primarily produced by plants, particularly within the Asteraceae family. These compounds play significant roles in plant defense and have been extensively studied for their wide range of biological activities, including antiviral, antimicrobial, anti-inflammatory, and anticancer properties. This review focuses on the biosynthesis, structure-activity relationships, and biological activities of sesquiterpene lactones, with an emphasis on their antiviral potential.
View Article and Find Full Text PDFChemosphere
January 2025
TNO Environmental Modelling, Sensing and Analysis, Princetonlaan 6-8, 3584 CB, Utrecht, the Netherlands. Electronic address:
Tyre and road wear particles (TRWPs) are estimated to be the largest source of microplastics in the environment and due to the intrinsic use of tyres in our society this will continue to grow. Understanding their degradation mechanisms and subsequent accumulation over time is important to gain insights into the fate and impact of these particles in the environment. Accelerated UV-ageing was performed on cryomilled tyre tread particles and TRWPs from a road simulator to investigate the abiotic degradation of rubber.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!