Role of TRPC Channels in Store-Operated Calcium Entry.

Adv Exp Med Biol

Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Building 10, Room 1N-113, NIH, Bethesda, MD, 20892, USA.

Published: September 2016

Store-operated calcium entry (SOCE) is a ubiquitous Ca(2+) entry pathway that is activated in response to depletion of Ca(2+) stores within the endoplasmic reticulum (ER) and contributes to the control of various physiological functions in a wide variety of cell types. The transient receptor potential canonical (TRPC) channels (TRPCs 1-7), that are activated by stimuli leading to PIP2 hydrolysis, were first identified as molecular components of SOCE channels. TRPC channels show a miscellany of tissue expression, physiological functions and channel properties. However, none of the TRPC members display currents that resemble I CRAC. Intensive search for the CRAC channel component led to identification of Orai1 and STIM1, now established as being the primary constituents of the CRAC channel. There is now considerable evidence that STIM1 activates both Orai1 and TRPC1 via distinct domains in its C-terminus. Intriguingly, TRPC1 function is not only dependent on STIM1 but also requires Orai1. The critical functional interaction between TRPC1 and Orai1, which determines the activation of TRPC1, has also been identified. In this review, we will discuss current concepts regarding the role of TRPC channels in SOCE, the physiological functions regulated by TRPC-mediated SOCE, and the complex mechanisms underlying the regulation of TRPCs, including the functional interactions with Orai1 and STIM1.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-319-26974-0_5DOI Listing

Publication Analysis

Top Keywords

trpc channels
16
physiological functions
12
role trpc
8
store-operated calcium
8
calcium entry
8
crac channel
8
orai1 stim1
8
channels
5
orai1
5
channels store-operated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!