Decomposition of Fluorinated Graphene under Heat Treatment.

Chemistry

Department of Low-dimensional Systems, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223, Prague 8, Czech Republic.

Published: June 2016

Fluorination modifies the electronic properties of graphene, and thus it can be used to provide material with on-demand properties. However, the thermal stability of fluorinated graphene is crucial for any application in electronic devices. Herein, X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption (TPD), and Raman spectroscopy were used to address the impact of the thermal treatment on fluorinated graphene. The annealing, at up to 700 K, caused gradual loss of fluorine and carbon, as was demonstrated by XPS. This loss was associated with broad desorption of CO and HF species, as monitored by TPD. The minor single desorption peak of CF species at 670 K is suggested to rationalize defect formation in the fluorinated graphene layer during the heating. However, fluorine removal from graphene was not complete, as some fraction of strongly bonded fluorine can persist despite heating to 1000 K. The role of intercalated H2 O and OH species in the defluorination process is emphasised.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201600901DOI Listing

Publication Analysis

Top Keywords

fluorinated graphene
16
graphene
6
decomposition fluorinated
4
graphene heat
4
heat treatment
4
treatment fluorination
4
fluorination modifies
4
modifies electronic
4
electronic properties
4
properties graphene
4

Similar Publications

Advances in nanomaterials for radiation protection in the aerospace industry: a systematic review.

Nanotechnology

December 2024

CCTS/DFQM, UFSCar - Campus Sorocaba, Rod. João Leme dos Santos km 110 - SP-264 Bairro do Itinga - Sorocaba CEP 18052-780, Sorocaba, 18052-780, BRAZIL.

Nanomaterials stand out for their exceptional properties and innovative potential, especially in applications that protect against space radiation. They offer an innovative approach to this challenge, demonstrating notable properties of radiation absorption and scattering, as well as flexibility and lightness for the development of protective clothing and equipment. This review details the use of polymeric materials, such as polyimides (PIs), which are efficient at attenuating ultraviolet (UV) radiation and atomic oxygen (AO).

View Article and Find Full Text PDF

Epoxy resin (EP) is an outstanding polymer material known for its low cost, ease of preparation, excellent electrical insulation properties, mechanical strength, and chemical stability. It is widely used in high- and ultra-high-voltage power transmission and transformation equipment. However, as voltage levels continue to increase, EP materials are gradually failing to meet the performance demands of operational environments.

View Article and Find Full Text PDF

Glutathione (GSH) is a bioactive tripeptide with important physiological functions in animals, plants, and microorganisms. GSH participates in various biochemical reactions in vivo and is known for its antioxidant, anti-allergy, and detoxification properties. This study introduces an innovative photoelectrochemical (PEC) method for GSH detection, leveraging a fluorine-doped tin oxide (FTO) electrode enhanced by TiO nanoflowers and graphitic carbon nitride quantum dots (g-CNQDs).

View Article and Find Full Text PDF

Flame-retardant phosphate-based electrolytes effectively enhance lithium-ion battery safety but suffer from poor compatibility with graphite anodes and high-voltage cathodes, hindering scalability. Fluorinated phosphates, though widely used, increase interfacial resistance at the anode, degrading performance. In this work, carbonate solvents with strong polarity are introduced to prevent tris(2,2,2-trifluoroethyl) phosphate (TFEP) from participating in the solvation structure of lithium ions.

View Article and Find Full Text PDF

Boosting Efficiency in Carbon Nanotube-Integrated Perovskite Photovoltaics.

Langmuir

December 2024

Department of Geophysics, College of Remote Sensing and Geophysics, Al-Karkh University of Science, Baghdad 10011, Iraq.

Carbon nanomaterials (graphene, carbon nanotubes, and graphene oxide) have potential applications for optoelectronics, thanks to their superior electronic and optical characteristics. The remarkable stability of carbon-based perovskite solar cells (PSCs) has attracted significant attention. Herein, a fluorine-doped carbon nanotube (F-CNT) is incorporated into the PSCs as a hole-transporting layer (HTL) in between methylammonium lead iodide (MAPbI) and the rear electrode to develop an effective MAPbI/HTL interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!