We studied the effects of silver nanoparticles (10 nm) on HepaRG cell spheroids simulating liver tissue. The mathematical model was proposed that describes nanoparticle diffusion in a spheroid consisting of 5000 cells depending on the external nanoparticle concentration. It was demonstrated that cells in the 3D model were less sensitive to the toxic effects of nanoparticles in comparison with 2D cultures. Impaired integrity of the cell membrane did not deteriorate cell viability (according to MTT test).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10517-016-3321-6DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
8
nanoparticles heparg
8
heparg cell
8
cell spheroids
8
transport toxicity
4
toxicity silver
4
cell
4
spheroids studied
4
studied effects
4
effects silver
4

Similar Publications

Surface-enhanced Raman scattering (SERS) substrates are garnering increasing interest for ultrasensitive high-throughput sensing. Notably, SERS-encoded nanostructures stand out due to their potential for nearly unlimited codification with excellent optical properties. In this paper we report a simple, versatile and cost-effective method for preparing SERS-encoded clusters.

View Article and Find Full Text PDF

Background: To investigate the antibiofilm effect and mechanism of the silver nanowire (AgNW)-modified glass ionomer cement (GIC) against multi-species oral biofilm, and to examine the mechanical and biochemical properties of this novel GIC material.

Methods: Conventional GIC was incorporated with different concentrations of AgNW and silver nanoparticles (AgNP). Multi-species biofilms of Streptococcus mutans, Streptococcus sobrinus, Lactobacillus fermentum, and Lactobacillus rhamnosus were cultured for 72 h on GIC specimens.

View Article and Find Full Text PDF

Silver nanoparticle-induced antimicrobial resistance in Pseudomonas aeruginosa and Salmonella spp. isolates from an urban lake.

Environ Pollut

January 2025

Department of Environmental Sciences, Southern Illinois University Edwardsville, 44 Circle Drive SW 2145, PO Box 1099, Edwardsville, IL 62026. Electronic address:

The antimicrobial properties and widespread incorporation of silver nanoparticles (AgNPs) into consumer products have raised concerns about their potential impact on public health and the environment. This study examined citrate-coated and uncoated AgNPs' antimicrobial effects on microbial growth and their potential to induce antimicrobial resistance (AMR) in the natural environment. We isolated Pseudomonas aeruginosa and Salmonella spp.

View Article and Find Full Text PDF

Photon-counting mammography is an emerging modality that allows for spectral imaging and provides a differentiation of material compositions. The development of photon-counting mammography-specific contrast agents has yet to be explored. In this study, the contrast, sensitivity, and organ dose between silver sulfide nanoparticles (AgS-NPs) and a clinically approved iodinated agent (iopamidol) were investigated using a contrast-embedded gradient ramp phantom and a prototype scanner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!