HES factors regulate specific aspects of chondrogenesis and chondrocyte hypertrophy during cartilage development.

J Cell Sci

Department of Orthopaedics and Rehabilitation, The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA Department of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental and Genome Laboratories, Duke University School of Medicine, Durham, NC 27710, USA Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA

Published: June 2016

RBPjκ-dependent Notch signaling regulates multiple processes during cartilage development, including chondrogenesis, chondrocyte hypertrophy and cartilage matrix catabolism. Select members of the HES- and HEY-families of transcription factors are recognized Notch signaling targets that mediate specific aspects of Notch function during development. However, whether particular HES and HEY factors play any role(s) in the processes during cartilage development is unknown. Here, for the first time, we have developed unique in vivo genetic models and in vitro approaches demonstrating that the RBPjκ-dependent Notch targets HES1 and HES5 suppress chondrogenesis and promote the onset of chondrocyte hypertrophy. HES1 and HES5 might have some overlapping function in these processes, although only HES5 directly regulates Sox9 transcription to coordinate cartilage development. HEY1 and HEYL play no discernable role in regulating chondrogenesis or chondrocyte hypertrophy, whereas none of the HES or HEY factors appear to mediate Notch regulation of cartilage matrix catabolism. This work identifies important candidates that might function as downstream mediators of Notch signaling both during normal skeletal development and in Notch-related skeletal disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4920244PMC
http://dx.doi.org/10.1242/jcs.181271DOI Listing

Publication Analysis

Top Keywords

chondrocyte hypertrophy
16
cartilage development
16
chondrogenesis chondrocyte
12
notch signaling
12
specific aspects
8
hypertrophy cartilage
8
rbpjκ-dependent notch
8
processes cartilage
8
cartilage matrix
8
matrix catabolism
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!