In Vitro Development of a Mucocutaneous Junction for Lip Reconstruction.

J Oral Maxillofac Surg

Professor, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Michigan, Ann Arbor, MI. Electronic address:

Published: November 2016

Purpose: We present a straightforward and reproducible technique to create, in vitro, a construct containing a mucocutaneous junction (MCJ) with a transitional zone (vermilion) for fabrication of a microvascular prelaminated flap for use in lip reconstruction.

Materials And Methods: Cultured primary human skin keratinocytes and oral mucosal epithelial cells at premixed ratios of 50% skin cells to 50% oral cells, 25% skin cells to 75% oral cells, and 75% skin cells to 25% oral cells were grown on an AlloDerm dermal equivalent (LifeCell, Branchburg, NJ) to create an MCJ equivalent with a lip or transitional zone (vermilion) using a novel 3-dimensional (3D) culture device with a barrier to separate co-cultured skin and oral cells. The 3 different cell ratios were compared by staining for the following specific differentiation markers to define the different areas of skin and mucosal keratinocytes: filaggrin, cytokeratin 10, cytokeratin 19, and small proline-rich protein 3.

Results: Immunohistochemical results showed that MCJ equivalents seeded with premixed cells were similar to the differentiation patterns of tissue-engineered 3D cultures using 100% oral mucosal epithelial cells or skin keratinocytes. The engineered MCJ-equivalent constructs, grown in the 3D device specifically constructed with a cell-free gap at the barrier site, formed a transitional zone (vermilion) at the barrier site with intermingling of the skin and oral keratinocytes. The results showed different and unique expression patterns of filaggrin, cytokeratin 10, cytokeratin 19, and small proline-rich protein 3 by those cells migrating into the gap, which were similar to those seen in human lip tissue. This pattern was not seen in MCJ equivalents created using premixed skin and oral cells.

Conclusions: Using a device to separately co-culture human oral and skin keratinocytes to allow the cells to migrate into a cell-free zone resulted in phenotypic expression closer to what is seen in native tissue, in comparison to premixing the skin and oral cells before seeding.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joms.2016.04.002DOI Listing

Publication Analysis

Top Keywords

oral cells
20
skin oral
16
cells
13
transitional zone
12
zone vermilion
12
skin keratinocytes
12
skin cells
12
skin
11
oral
10
mucocutaneous junction
8

Similar Publications

The periodontal ligament (PDL) is a connective tissue, and PDL cells have a potential to differentiate into cementoblasts, osteoblasts, and gingival fibroblasts. This study investigated whether transcription factor c-Myb could induce differentiation of PDL cells for periodontal regeneration. PDL cells were isolated from extracted teeth and cultured.

View Article and Find Full Text PDF

Background: To correlate between immunohistochemical expression of tumor-infiltrating lymphocytes (TILs), tumor-associated macrophages (TAMs), and natural killer (NK) cells with the AJCC 8th edition TNM staging system and other disease-modifying clinico-pathological variables.

Methods: The representative histology sections of tumor invasive margin (IM) and tumor core (TC) were selected according to the International Immuno-Oncology Biomarker Working Group and were subjected to immunohistochemistry with antibodies for TILs (CD3, CD8, FOXP3), NK Cells (CD57), TAMs (CD68, CD163) and pan-leukocyte marker (CD45). Histo-immuno-density-intensity (HIDI) scoring was calculated as a product of the proportion and intensity of staining.

View Article and Find Full Text PDF

Semaphorin-4D signaling in recruiting dental stem cells for vascular stabilization.

Stem Cell Res Ther

January 2025

Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, Prince Philip Dental Hospital, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong, Hong Kong SAR.

Background: Achieving a stable vasculature is crucial for tissue regeneration. Endothelial cells initiate vascular morphogenesis, followed by mural cells that stabilize new vessels. This study investigated the in vivo effects of Sema4D-Plexin-B1 signaling on stem cells from human exfoliated deciduous teeth (SHED)-supported angiogenesis, focusing on its mechanism in PDGF-BB secretion.

View Article and Find Full Text PDF

The objective of this study was to tailor an osteoinductive scaffold for alveolar bone regeneration and around immediately placed implants in extraction sockets of dogs. Tailored amorphous multiporous bioactive glass (TAMP -BG) was prepared and characterized for bioactivity and response of human alveolar bone marrow mesenchymal stem cells (hABMSCs). Extraction sockets of twenty-two male mongrel dogs received TAMP-BG in the right side around implant in the distal socket of the mandibular fourth premolar (P4), while the adjacent empty mesial socket of the same tooth was filled with the same graft.

View Article and Find Full Text PDF

Enhancer-driven Shh signaling promotes glia-to-mesenchyme transition during bone repair.

Bone Res

January 2025

Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China.

Plp1-lineage Schwann cells (SCs) of peripheral nerve play a critical role in vascular remodeling and osteogenic differentiation during the early stage of bone healing, and the abnormal plasticity of SCs would jeopardize the bone regeneration. However, how Plp1-lineage cells respond to injury and initiate the vascularized osteogenesis remains incompletely understood. Here, by employing single-cell transcriptional profiling combined with lineage-specific tracing models, we uncover that Plp1-lineage cells undergoing injury-induced glia-to-MSCs transition contributed to osteogenesis and revascularization in the initial stage of bone injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!