Quantitative structure-activity relationships (QSAR) of imidazolium ionic liquids (ILs) as inhibitors of C. albicans collection strains (IOA-109, KCTC 1940, ATCC 10231) have been studied. Predictive QSAR models were built using different descriptor sets for a set of 88 ionic liquids with known minimum inhibitory concentrations (MIC) against C. albicans. We applied the state-of-the-art QSAR methodologies such as WEKA Random Forest (RF) as a binary classifier, Associative Neural Networks (ASNN) and k-Nearest Neighbors (k-NN) to build continuum non-linear regression models. The obtained models were validated using a 5-fold cross-validation approach and resulted in the prediction accuracies of 80% ± 5.0 for the classification models and q2 = 0.73-0.87 for the non-linear regression models. Biological testing of newly synthesized 1,3-dialkylimidazolium ionic liquids with predicted activity was performed by disco-diffusion method against C. albicans ATCC 10231 M885 strain and clinical isolates C. albicans, C. krusei and C. glabrata strains. The high percentage of coincidence between the QSAR predictions and the experimental results confirmed the high predictive power of the developed QSAR models within the applicability domain of new imidazolium ionic liquids.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1570163813666160510122201DOI Listing

Publication Analysis

Top Keywords

ionic liquids
20
imidazolium ionic
12
atcc 10231
8
qsar models
8
non-linear regression
8
regression models
8
qsar
6
models
6
liquids
5
liquids potential
4

Similar Publications

The adoption of carbon capture, utilization, and storage (CCUS) technology is increasingly prevalent, driven by the global initiative to conserve energy and reduce emissions. Nevertheless, CCUS has the potential to induce corrosion in equipment, particularly in high-pressure environments containing carbon dioxide (CO). Therefore, anti-corrosion protection is necessary for the metal utilized for CO production and storage equipment.

View Article and Find Full Text PDF

Understanding the arrangement of ionic liquids at the interface and their interactions with the surface is crucial for enhancing selectivity in heterogeneous reactions for practical applications. In this study, we investigate the nature of the adsorption and structural orientations of a sulfonyl-based ionic liquid on platinum-based mono- and bimetallic (111) surfaces employing replica exchange molecular dynamics and first-principles density functional theory calculations. More than 30 confirmations of the ionic liquid are identified on both monometallic and bimetallic surfaces.

View Article and Find Full Text PDF

Correction for 'Structure, dynamic, and free energy analyses of 5-hydroxymethylfurfural in aprotic solvents and imidazolium ionic liquids using all-atom molecular dynamics simulations' by Sweta Jha , , 2024, , 28417-28430, https://doi.org/10.1039/D4CP02914C.

View Article and Find Full Text PDF

In this study, the dispersion behavior of MoS₂ in ionic liquids (ILs) with varying alkyl chain lengths was the primary focus of investigation, followed by the design of a novel PAM/SMA/CMC/PDA@MoS hydrogel. By optimizing the concentrations of CMC and PDA@MoS, a bifunctional hydrogel with both sensing and catalytic functions was successfully developed. Mechanical tests revealed that the PAM/SMA/CMC/0.

View Article and Find Full Text PDF

The study reports solid-state ceramic supercapacitors (SSCs) assembled using a novel composite electrolyte based on Li ion conducting perovskite-type LLTO (LiLaTiO) and an ionic liquid (EMIM BF). Small amounts of various ionic liquids (ILs) were added to LLTO to enhance the ionic conductivity and improve electrode compatibility. The optimal composition with approximately ∼6 wt% EMIM BF in LLTO exhibited a high ionic conductivity of around ∼10 Ω cm at room temperature, nearly three orders of magnitude higher than that of the pristine LLTO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!