Protein-targeted therapies are expected to selectively kill tumor cells that express the targeted protein biomarker. Although a tumor mass may initially respond to targeted therapies based on expression of the targeted protein, all cells within a tumor may not express the targeted protein above a critical threshold level; therefore, those cells that do not express, or that downregulate expression of, the targeted protein may not be responsive to therapy. The ability to monitor the dynamic expression of these protein biomarkers throughout the course of therapy may allow for treatment to be personalized in real-time in response to the evolving nature of the tumor. This report demonstrates, by monitoring a single patient through multiple therapies, how targeted mass spectrometry is an effective, quantitative method that provides real-time analysis of multiple therapeutically associated targeted proteins that can be used to personalize a patient's treatment strategy throughout the course of care.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5889074 | PMC |
http://dx.doi.org/10.6004/jnccn.2016.0059 | DOI Listing |
J Med Chem
January 2025
Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
The Ca/calmodulin-dependent protein kinase II α (CaMKIIα) plays a crucial role in regulating neuronal signaling and higher brain functions, being involved in various brain diseases. Utilization of small molecules targeting the CaMKIIα hub domain has proved to be a promising strategy for specific CaMKIIα modulation and future therapy. Through an structure-based virtual screening campaign, we herein identified 2-arylthiazole-4-carboxylic acids as a new class of high-affinity CaMKIIα hub ligands.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Geneis (Beijing) Co. Ltd., Beijing 100102, China.
Identification of potential drug-target interactions (DTIs) is a crucial step in drug discovery and repurposing. Although deep learning effectively deciphers DTIs, most deep learning-based methods represent drug features from only a single perspective. Moreover, the fusion method of drug and protein features needs further refinement.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1C 5S7, Canada.
The World Health Organization has identified multidrug-resistant bacteria as a serious global health threat. Gram-negative bacteria are particularly prone to antibiotic resistance, and their high rate of antibiotic resistance has been suggested to be related to the complex structure of their cell membrane. The outer membrane of Gram-negative bacteria contains lipopolysaccharides that protect the bacteria against threats such as antibiotics, while the inner membrane houses 20-30% of the bacterial cellular proteins.
View Article and Find Full Text PDFShock
January 2025
Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University; 151 Rd, Yan Jiang West, Guangzhou, 510120, China.
The global prevalence of heart failure is still growing, which imposes a heavy economic burden. The role of microRNA-146b (miR-146b) in HF remain largely unknown. This study aims to explore the role and mechanism of miR-146b in HF.
View Article and Find Full Text PDFACS Chem Biol
January 2025
Biogen, Chemical Biology & Proteomics, 225 Binney Street, Cambridge, Massachusetts 02142, United States.
Dimethyl fumarate (DMF) is an established oral therapy for multiple sclerosis worldwide. Although the clinical efficacy of these fumarate esters has been extensively investigated, the mode of action and pharmacokinetics of fumarates have not been fully elucidated due to their broad-spectrum reactivity and complex metabolism in vivo. To better understand the mechanism of action of DMF and its active metabolite, monomethyl fumarate (MMF), we designed and utilized clickable probes to visualize and enrich probe-modified proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!