Small-diameter carbon nanotubes (CNTs) are shown to enable exceptionally fast transport of water vapor under a concentration gradient driving force. Thanks to this property, membranes having sub-5 nm CNTs as conductive pores feature outstanding breathability while maintaining a high degree of protection from biothreats by size exclusion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201600740 | DOI Listing |
Nat Commun
November 2024
Department of Civil Engineering, The University of Hong Kong, Hong Kong, SAR 999077, China.
Nano Lett
October 2024
Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189 China.
Uric acid is typically measured through blood tests, which can be inconvenient and uncomfortable for patients. Herein, we propose a wearable surface-enhanced Raman scattering (SERS) chip, incorporating a hydrogel membrane with integrated plasmonic trimers, for noninvasive monitoring of uric acid in sweat. The plasmonic trimers feature sub 5 nm nanogaps, generating strong electromagnetic fields to boost the Raman signal of surrounding molecules.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2024
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, College of Physical Science and Technology, iChEM, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China; College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China. Electronic address:
Intermetallic compounds are emerging as promising oxygen reduction reaction (ORR) catalysts for fuel cells due to their typically higher activity and durability compared to disordered alloys. However, the preparation of intermetallic catalysts often requires high-temperature annealing, which unfortunately leads to adverse sintering of the metal nanoparticles. Herein, we develop a scalable site-selective sulfur anchoring strategy that effectively suppresses alloy sintering, ensuring the formation of efficient intermetallic electrocatalysts with small sizes and high ordering degrees.
View Article and Find Full Text PDFBiosens Bioelectron
December 2023
The State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macao, China; Faculty of Science and Technology - Electrical and Computer Engineering, University of Macau, Macao, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao, China. Electronic address:
The development of a rapid and reliable polymerase chain reaction (PCR) method for point-of-care (POC) diagnosis is crucial for the timely identification of pathogens. Microfluidics, which involves the manipulation of small volumes of fluidic samples, has been shown to be an ideal approach for POC analysis. Among the various microfluidic platforms available, digital microfluidics (DMF) offers high degree of configurability in manipulating μL/nL-scale liquid and achieving automation.
View Article and Find Full Text PDFSmall Methods
December 2023
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.
Hierarchical self-assembly of synthetic polymers in solution represents one of the sophisticated strategies to replicate the natural superstructures which lay the basis for their superb functions. However, it is still quite challenging to increase the degree of complexity of the as-prepared assemblies, especially in a large scale. Liquid-liquid phase separation (LLPS) widely exists in cells and is assumed to be responsible for the formation of many cellular organelles without membranes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!