Cocoon and silk yields are the most important characteristics of sericulture. However, few studies have examined the genes that modulate these features. Further studies of these genes will be useful for improving the products of sericulture. JingSong (JS) and Lan10 (L10) are two strains having significantly different cocoon and silk yields. In the current study, RNA-Seq and quantitative polymerase chain reaction (qPCR) were performed on both strains in order to determine divergence of the silk gland, which controls silk biosynthesis in silkworms. Compared with L10, JS had 1375 differentially expressed genes (DEGs; 738 up-regulated genes and 673 down-regulated genes). Nine enriched gene ontology (GO) terms were identified by GO enrichment analysis based on these DEGs. KEGG enrichment analysis results showed that the DEGs were enriched in three pathways, which were mainly associated with the processing and biosynthesis of proteins. The representative genes in the enrichment pathways and ten significant DEGs were further verified by qPCR, the results of which were consistent with the RNA-Seq data. Our study has revealed differences in silk glands between the two silkworm strains and provides a perspective for understanding the molecular mechanisms determining silk yield.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4861282 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155329 | PLOS |
STAR Protoc
January 2025
State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China. Electronic address:
The silk glands (SGs) of silkworms specifically synthesize silk proteins, thus strongly influencing the yield and quality of silk. Here, we present a protocol for isolating SG nuclei from silkworms and obtaining high-quality tissue slices for spatial transcriptomics. We describe steps for rearing, dissecting, and nucleus isolation.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
Nonconventional luminogens have great potential for applications in fields like anti-counterfeiting encryption. But so far, the photoluminescence quantum yield (PLQY) of most of these powders is still relatively low and the persistent room temperature phosphorescence (p-RTP) emission is relatively weak. To improve their PLQY and p-RTP, pressing the powder into tablets has been preliminarily proven to be an effective method, but the specific mechanism has not been fully elucidated yet.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
Mulberry ( spp.) is an economically significant plant in the production of silk through feeding leaves to silkworm larvae. Traditional silkworm rearing is heavily labor-intensive, particularly in leaf collection, which leads to low efficiency and impedes the development of sericulture.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Developing simple and efficient multi-gene expression systems is crucial for multi-trait improvement or bioproduction in transgenic plants. In previous research, an -based bicistronic system from the nonpathogenic fungus efficiently expressed multiple enzyme proteins in yeast and maize, and the heterologous enzymes successfully performed their catalytic activity to reconstruct the biosynthetic pathway in the host organism. Unlike enzyme proteins, some heterologous functional proteins (such as insecticidal proteins) are dose-dependent and they need to express sufficient levels to perform their biological functions.
View Article and Find Full Text PDFJ Texture Stud
February 2025
Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.
The increasing demand for protein-rich, plant-based foods has driven the development of meat analogs that closely mimic the texture and mouthfeel of animal meat. While plant-based fibrils and electrospun silk fibroin fibers have been explored for texture enhancement and scaffolding in both meat analogs and cell-based meats, the use of wet-spun fibroin protein fibers as a food ingredient remains underexplored. This study investigates the potential of wet-spun recombinant fibroin fibers to enhance the textural properties of meat analogs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!