Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Adaptive multilevel splitting (AMS) is a rare event sampling method that requires minimal parameter tuning and allows unbiased sampling of transition pathways of a given rare event. Previous simulation studies have verified the efficiency and accuracy of AMS in the calculation of transition times for simple systems in both Monte Carlo and molecular dynamics (MD) simulations. Now, AMS is applied for the first time to an MD simulation of protein-ligand dissociation, representing a leap in complexity from the previous test cases. Of interest is the dissociation rate, which is typically too low to be accessible to conventional MD. The present study joins other recent efforts to develop advanced sampling techniques in MD to calculate dissociation rates, which are gaining importance in the pharmaceutical field as indicators of drug efficacy. The system investigated here, benzamidine bound to trypsin, is an example common to many of these efforts. The AMS estimate of the dissociation rate was found to be (2.6 ± 2.4) × 10(2) s(-1), which compares well with the experimental value.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724379 | PMC |
http://dx.doi.org/10.1021/acs.jctc.6b00277 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!