Going beyond the classical amphiphilicity paradigm: the self-assembly of completely hydrophobic polymers into free-standing sheets and hollow nanostructures in solvents of variable quality.

Soft Matter

Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.

Published: June 2016

Self-assembly is well-known to occur in amphiphiles, and the totally hydrophobic ones are never reported to self-assemble. In this work we report for the first time that the latter can self-assemble into free-standing sheets and hollow spheres in toluene/methanol mixed solvents by modulating the solvent quality. The homopolymers studied in this work are polystyrene (PS), polyphenylacetylene (PPA), and poly(3-hexyl thiophene) (P3HT), representing polymers with different rigidity. All the three form a homogenous solution in toluene, but self-assembly occurs in the toluene/methanol mixed solvents. Micrometer sized free-standing sheets were formed for PS, PPA, and P3HT at methanol volume fractions being 43%, 50%, and 67%, respectively, and hollow spheres were observed for PPA at higher methanol fractions of 75 and 90%. Under the latter solvent conditions, PS forms solid spheres, yet ill-defined aggregates and free-standing sheets coexist in the case of P3HT. This non-solvent induced self-assembly was explained by a delicate balance of two "opposing forces": van der Waals attractive and entropic repulsive forces generated between the segments of these homopolymers within a single chain, between two chains, and among more chains in the solvents of worsened quality.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6sm00259eDOI Listing

Publication Analysis

Top Keywords

free-standing sheets
16
sheets hollow
8
hollow spheres
8
toluene/methanol mixed
8
mixed solvents
8
going classical
4
classical amphiphilicity
4
amphiphilicity paradigm
4
self-assembly
4
paradigm self-assembly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!