Two subtypes of intervertebral disc degeneration distinguished by large-scale population-based study.

Spine J

Centre for Genomic Sciences, The University of Hong Kong, 5 Sassoon Rd, Pokfulam, Hong Kong SAR, China; Department of Psychiatry, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong SAR, China. Electronic address:

Published: September 2016

Background Context: Lumbar disc degeneration (LDD) is a major cause of low back pain, and is a common and disabling condition worldwide. It has been defined and measured by multiple spine magnetic resonance imaging (MRI) features, but the heterogeneity among them has never been fully addressed.

Purpose: This study examined the intercorrelations, risk factor associations, and single nucleotide polymorphism (SNP) heritabilities of lumbar disc MRI features in a large-scale sample to classify the different intervertebral disc phenotypes associated with LDD.

Study Design: A cross-sectional study was conducted consisting of 2,943 volunteers of Southern Chinese origin (mean age: 41.1 years; range: 15-55 years; 59.6% women).

Outcome Measures: The outcome measures were MRI phenotypic spinal patterns and their risk factor profiles in relation to developmental or degenerative origins of disc degeneration.

Methods: Sagittal T2-weighted MRI of the lumbar spine from L1 to S1 was assessed. The MRI features of lumbar intervertebral disc changes, such as disc signal intensity loss and disc bulges or extrusions, as well as additional imaging phenotypes of end plate changes, high-intensity zones, and bone marrow changes, were evaluated. Blood samples were taken for genotyping using the HumanOmni-ZhongHua-8 BeadChip. Subject demographics, environmental, and lifestyle factors were assessed by questionnaires. Multivariate statistical techniques were used for phenotype evaluation. Polychoric correlations and local regression statistical analyses were performed. The genetic components contributed by common SNPs were estimated by comparing genetic correlations and phenotypic correlations using the Genome-Wide Complex Trait Analysis (GCTA) tool.

Results: The study noted that lumbar disc MRI features separated into two groups with differential patterns of risk factor associations. A subset of lumbar disc abnormalities, including end plate changes but also upper lumbar disc bulging and signal intensity loss, may have a developmental origin. Subsequent degenerative changes, typically affecting the lower lumbar discs, then emerge as individuals age and are associated with body mass index.

Conclusions: This is the first large-scale study to identify two distinct patterns of lumbar disc alterations, noting degenerative changes and a possible developmental component affecting the lumbar spine. This new classification provides a starting point for a more homogeneous phenotype definition, which may provide greater statistical power and precision in future genetic and epidemiologic studies. In addition, such insights may have direct clinical implications in the prevention, therapeutics, and prognostics of patients with disc degeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.spinee.2016.04.020DOI Listing

Publication Analysis

Top Keywords

lumbar disc
24
mri features
16
disc
13
intervertebral disc
12
disc degeneration
12
risk factor
12
lumbar
10
factor associations
8
disc mri
8
patterns risk
8

Similar Publications

Objective: Awake, endoscopic spinal fusion has been utilized as an ultra-minimally invasive surgery technique to accomplish the goals of spinal fixation, fusion, and disc height restoration. While many techniques exist for this approach, this series represents a single institution's experience with a large cohort and the evolution of this method.

Methods: The medical records of a consecutive series of 400 patients treated over a 10-year period were retrospectively reviewed.

View Article and Find Full Text PDF

This study investigates the gross morphological and morphometric characteristics of thoracic and lumbar intervertebral discs (IVDs) in guinea pigs, utilising micro-CT imaging and anatomical dissection. The findings reveal 13 thoracic and six lumbar IVDs were identified, with thoracic discs transitioning from rounded forms at T1-T3 to triangular and heart-shaped structures at T4-T13, while lumbar IVDs exhibited a consistently flattened heart shape. Morphometric analysis revealed statistically significant differences, with lumbar IVDs being larger in lateral and dorsoventral width, disc area, annulus fibrosus (AF) area and nucleus pulposus (NP) area, and ventral height compared to thoracic discs.

View Article and Find Full Text PDF

Background: There are differences in the extent of excision of articular processes, spinal processes and posterior ligamentum complexes (PLC) for posterior approach lumbar interbody fusion. Given that the biomechanical significance of these structures has been verified and that deterioration of the biomechanical environment is the main trigger for complications in both fused and adjacent motion segments, changes in decompression ranges may affect the potential risk of adjacent segmental disease (ASD) biomechanically; however, this topic has yet to be identified.

Methods: Posterior lumbar interbody fusion (PLIF) with different decompression strategies was simulated in a well-validated lumbosacral model.

View Article and Find Full Text PDF

Study Design: Prospective biochemical study of comparison of A Disintegrin and Metalloproteinase with Thrombospondin motifs-4 (ADAMTS-4) and A Disintegrin and Metalloproteinase with Thrombospondin motifs 5 (ADAMTS5) levels in preoperative and postoperative venous blood, as well as in disc tissue obtained during surgery, in patients undergoing surgery for intervertebral disc disease, with enzyme levels in venous blood from a control group.

Objective: To compare the levels of ADAMTS-4 and ADAMTS-5 between patients with degenerative intervertebral discs and a healthy control group, aiming to identify biomarkers associated with intervertebral disc degeneration.

Literature: Although numerous studies have investigated the relationship between ADAMTS-4 and ADAMTS-5 enzymes and degeneration in experimental rat models and human tissues, no study has correlated their serum levels with intervertebral disc degeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!