Why does Gila elegans have a bony tail? A study of swimming morphology convergence.

Zoology (Jena)

Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA.

Published: June 2016

Caudal-fin-based swimming is the primary form of locomotion in most fishes. As a result, many species have developed specializations to enhance performance during steady swimming. Specializations that enable high swimming speeds to be maintained for long periods of time include: a streamlined body, high-aspect-ratio (winglike) caudal fin, a shallow caudal peduncle, and high proportions of slow-twitch ("red") axial muscle. We described the locomotor specializations of a fish species native to the Colorado River and compared those specializations to other fish species from this habitat, as well as to a high-performance marine swimmer. The focal species for this study was the bonytail (Gila elegans), which has a distinct morphology when compared with closely related species from the Southwestern United States. Comparative species used in this study were the roundtail chub (Gila robusta), a closely related species from low-flow habitats; the common carp (Cyprinus carpio), an invasive cyprinid also found in low-flow habitats; and the chub mackerel (Scomber japonicus), a model high-performance swimmer from the marine environment. The bonytail had a shallow caudal peduncle and a high-aspect-ratio tail that were similar to those of the chub mackerel. The bonytail also had a more streamlined body than the roundtail chub and the common carp, although not as streamlined as the chub mackerel. The chub mackerel had a significantly higher proportion of red muscle than the other three species, which did not differ from one another. Taken together, the streamlined body, narrow caudal peduncle, and high-aspect-ratio tail of the bonytail suggest that this species has responded to the selection pressures of the historically fast-flowing Colorado River, where flooding events and base flows may have required native species to produce and sustain very high swimming speeds to prevent being washed downstream.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.zool.2016.03.002DOI Listing

Publication Analysis

Top Keywords

chub mackerel
16
streamlined body
12
caudal peduncle
12
species
10
gila elegans
8
high swimming
8
swimming speeds
8
shallow caudal
8
specializations fish
8
fish species
8

Similar Publications

Galectins exhibit a variety of biological functions through interactions with their ligands, including galactose and its derivatives. Tandem-repeat galectins, such as Galectin-8, can act as pattern recognition receptors to aggregate and neutralize bacterial pathogens. In this study, Galectin-8 was identified in Trachinotus ovatus (golden pompano).

View Article and Find Full Text PDF

Exploring the immunological functions of thioredoxin domain-containing protein 17 (TXNDC17) in chub mackerel (Scomber japonicus): Immune response and cellular redox homeostasis.

Dev Comp Immunol

December 2024

Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea. Electronic address:

All organisms have evolved sophisticated antioxidant networks and enzymes to counteract reactive radicals, among which thioredoxin (Trx) systems are especially noteworthy. Thioredoxin domain-containing protein 17 (TXNDC17) is a ubiquitously expressed enzyme with oxidoreductase activity belonging to the Trx protein family. This study successfully uncovered and analyzed the TXNDC17 gene in Scomber japonicus (SjTXNDC17).

View Article and Find Full Text PDF

Fish diversity, an important indicator of aquatic ecosystem health, is declining due to water pollution, overfishing, climate change, and invasive species. Effective surveying and monitoring are required to protect fish diversity. Here, a high-sensitivity environmental DNA (eDNA) metabarcoding technique was used to investigate fish diversity in the Danjiang River, Shaanxi Province, China.

View Article and Find Full Text PDF

Changes in oceanographic conditions can affect species distribution in marine habitats. Global climate change may negatively influence the oceanographic factor-species distribution relationship. Here, we assessed the influence of oceanographic conditions on chub mackerel (Scomber japonicus) distribution in northeastern Taiwan by constructing and using a habitat ensemble model incorporating chub mackerel fishery, climatic oscillation, and oceanography data.

View Article and Find Full Text PDF

Three hepcidins from the spotted knifejaw (Oplegnathus punctatus) promote antimicrobial activity via TLR/NFκB pathway.

Fish Shellfish Immunol

November 2024

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China. Electronic address:

Hepcidin belongs to a class of small cationic antimicrobial peptides rich in cysteine. It is synthesized by liver and is widely involved in host antimicrobial, antiviral and other immune responses. We identified and characterized three hepcidin genes (OpHep1, OpHep2 and OpHep3) in spotted knifejaw.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!