The malaria-causing parasite Plasmodium falciparum employs a salvage pathway for the biosynthesis of nucleotides, in contrast to de novo biosynthesis that is utilized by the human host. A series of twenty-two 2-, 6- and 5'-modified adenosine ribonucleosides was synthesized, with the expectation that these compounds would generate toxic metabolites instead of active nucleotides by the pathogen, while remaining inert in host cells. Bioassays with P. falciparum (K1 strain) indicated IC50 values as low as 110nM and a selectivity index with respect to cytotoxicity toward an L6 rat myoblast cell line of >1000 for the most potent analogue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2016.04.053 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!