Assemblies of nanoparticles are studied in many research fields from physics to medicine. However, as it is often difficult to produce mono-dispersed particles, investigating the key parameters enhancing their efficiency is blurred by wide size distributions. Indeed, near-field methods analyse a part of the sample that might not be representative of the full size distribution and macroscopic methods give average information including all particle sizes. Here, we introduce temperature differential ferromagnetic nuclear resonance spectra that allow sampling the crystallographic structure, the chemical composition and the chemical order of non-interacting ferromagnetic nanoparticles for specific size ranges within their size distribution. The method is applied to cobalt nanoparticles for catalysis and allows extracting the size effect from the crystallographic structure effect on their catalytic activity. It also allows sampling of the chemical composition and chemical order within the size distribution of alloyed nanoparticles and can thus be useful in many research fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4865821 | PMC |
http://dx.doi.org/10.1038/ncomms11532 | DOI Listing |
Langmuir
January 2025
Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.
In this work, we show how shape matters for the ordering of red blood cells (RBCs) at a water-air interface for both artificially rigidified and sphered cells as a model system for hereditary spherocytosis. We report enhanced long-range order for spherical RBCs over disk-shaped RBCs arising from the increased local ordering of spheres relative to disks. We show that rigidity has a greater effect on the radial distribution of spherical vs disk-shaped RBCs by slightly increasing the average distance between cells.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Computer and Information Sciences, Northumbria University, Newcastle, NE1 8ST, UK.
The Misbalance Rodeg () index stands out among the 148 discrete Adriatic indices demonstrating considerable predictive capabilities in evaluations carried out by the International Academy of Mathematical Chemistry. This index excels particularly in forecasting both the enthalpy and the standard enthalpy of vaporization for octane isomers. Despite its significant chemical applicability, the index has not been extensively explored in the literature.
View Article and Find Full Text PDFRSC Adv
January 2025
Gansu Zhongshang Food Quality Test and Detection Co., Ltd Lanzhou 730010 China.
Ferrihydrite (Fh), a widely distributed mineral in the environment, plays a crucial role in the geochemical cycling of elements. This study used experimental and computational approaches to investigate the adsorption behavior of seven heavy metal ions on Fh. The pH edge analysis revealed that the adsorption capacity followed the order: Pb > Cu > Zn > Cd > Ni > Co > Mn, with Pb showed the highest adsorption.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Materials and Metallurgical Engineering, Bangladesh University of Engineering & Technology (BUET) Dhaka Bangladesh
All-solid-state lithium-ion batteries (ASSLBs) are the next advancement in battery technology which is expected to power the next generation of electronics, particularly electric vehicles due to their high energy density and superior safety. ASSLBs require solid electrolytes with high ionic conductivity to serve as a Li-ion battery, driving extensive research efforts to enhance the ionic conductivity of the existing solid electrolytes. Keeping this in view, the B-site of LiLaTiO (LLTO) solid electrolyte has been partially substituted with Ga and novel Ga-doped LLTO (Li LaTi Ga O) solid-electrolytes are fabricated using the solid-state reaction method, followed by sintering at 1100 °C for 2 h.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
The advancement in materials chemistry promoted the growth of energy storage systems such as capacitors, supercapacitors and batteries. Covalent organic frameworks and nanomaterials have significantly improved the performance of various energy storage systems. Because of the unique properties of these materials, like high surface area, tunable architectures, and enhanced conductivity, researchers have developed effective and durable energy storage solutions for multiple applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!