Understanding high-velocity microparticle impact is essential for many fields, from space exploration to medicine and biology. Investigations of microscale impact have hitherto been limited to post-mortem analysis of impacted specimens, which does not provide direct information on the impact dynamics. Here we report real-time multi-frame imaging studies of the impact of 7 μm diameter glass spheres traveling at 700-900 m/s on elastomer polymers. With a poly(urethane urea) (PUU) sample, we observe a hyperelastic impact phenomenon not seen on the macroscale: a microsphere undergoes a full conformal penetration into the specimen followed by a rebound which leaves the specimen unscathed. The results challenge the established interpretation of the behaviour of elastomers under high-velocity impact.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860635PMC
http://dx.doi.org/10.1038/srep25577DOI Listing

Publication Analysis

Top Keywords

microparticle impact
8
real-time multi-frame
8
multi-frame imaging
8
impact
7
dynamics supersonic
4
supersonic microparticle
4
impact elastomers
4
elastomers revealed
4
revealed real-time
4
imaging understanding
4

Similar Publications

Electric quadrupole traps are a leading technology for suspending charged objects ranging in size from single protons to atomic and molecular ions, and even to nano- and micron-sized bodies. If the levitated objects' charge distribution contains multipoles, the time-dependent trapping fields can significantly impact its rotational motion. Here, we experimentally observe the transition from librational motion to a regime where a microparticle rotates in sync with the trap drive.

View Article and Find Full Text PDF

Mass Transfer-Reaction Modeling of CO Capture Mediated by Immobilized Carbonic Anhydrase Enzyme on Multiscale Supporting Structures.

Environ Sci Technol

January 2025

Zhejiang Key Laboratory of Clean Energy Conversion and Utilization, Science and Education Integration College of Energy and Carbon Neutralization, Zhejiang University of Technology, Hangzhou 310014, China.

Article Synopsis
  • Immobilized carbonic anhydrase (CA) enhances CO absorption in potassium carbonate (PC) solutions, presenting a viable alternative to traditional amine-based carbon capture methods.
  • The study developed cross-scale models to assess how different enzyme immobilization materials—ranging from nanoparticle to macro-scale carriers—affect CO absorption rates, finding that nanoscale carriers are most effective.
  • While increasing enzyme activity can boost absorption rates, diffusion limits, particularly in the liquid phase, impose an upper limit to this enhancement, and smaller particle sizes below 0.35 μm significantly improve performance over benchmark solutions.
View Article and Find Full Text PDF

Osteoarthritis (OA) is a significant condition that profoundly impacts synovial joints, including cartilage and subchondral bone plate. Biomaterials that can impede OA progression are a promising alternative or supplement to anti-inflammatory and surgical interventions. Magnesium (Mg) alloys known for bone regeneration potential were assessed in the form of Mg microparticles regarding their impact on tissue regeneration and prevention of OA progression.

View Article and Find Full Text PDF

[Regulatory effect of Epimedium flavonoid microparticles on pulmonary pre-metastatic microenvironment].

Zhongguo Zhong Yao Za Zhi

November 2024

Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing 210028, China Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Provincial Academy of Chinese Medicine Nanjing 210028, China.

Tumor metastasis is the main cause of death in clinical patients. The proposal of the pre-metastatic microenvironment hypothesis offers a new research direction for tumor metastasis. Targeting and inhibiting the activation of the stimulator of interferon genes(STING) signals by tumor cell-derived microparticles may help reduce tumor metastasis.

View Article and Find Full Text PDF

Food waste is a global concern with enormous economic, environmental and social impacts that has contributed to active packaging evolution. However, incorporating bioactive substances into the packaging can deteriorate its physicochemical and mechanical characteristics. Thus, the objective of this work was to entrap the natural bioactive compound thymol into microparticles and apply them in the form of pads for the controlled release of bioactivity in food packaging material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!