Sensing of lipopolysaccharide (LPS) in the cytosol triggers caspase-11 activation and is central to host defense against Gram-negative bacterial infections and to the pathogenesis of sepsis. Most Gram-negative bacteria that activate caspase-11, however, are not cytosolic, and the mechanism by which LPS from these bacteria gains access to caspase-11 in the cytosol remains elusive. Here, we identify outer membrane vesicles (OMVs) produced by Gram-negative bacteria as a vehicle that delivers LPS into the cytosol triggering caspase-11-dependent effector responses in vitro and in vivo. OMVs are internalized via endocytosis, and LPS is released into the cytosol from early endosomes. The use of hypovesiculating bacterial mutants, compromised in their ability to generate OMVs, reveals the importance of OMVs in mediating the cytosolic localization of LPS. Collectively, these findings demonstrate a critical role for OMVs in enabling the cytosolic entry of LPS and, consequently, caspase-11 activation during Gram-negative bacterial infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4874922PMC
http://dx.doi.org/10.1016/j.cell.2016.04.015DOI Listing

Publication Analysis

Top Keywords

caspase-11 activation
12
outer membrane
8
membrane vesicles
8
cytosolic localization
8
localization lps
8
gram-negative bacterial
8
bacterial infections
8
gram-negative bacteria
8
lps
7
caspase-11
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!