Discovery of a sulfamate-based steroid sulfatase inhibitor with intrinsic selective estrogen receptor modulator properties.

Eur J Med Chem

Laboratory of Medicinal Chemistry, CHU de Québec - Research Center (CHUL, T4), 2705 Laurier Boulevard, Québec, QC, G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada. Electronic address:

Published: August 2016

Steroid sulfatase (STS), the enzyme which converts inactive sulfated steroid precursors into active hormones, is a promising therapeutic target for the treatment of estrogen-sensitive breast cancer. We report herein the synthesis and in vitro study of dual-action STS inhibitors with selective estrogen-receptor modulator (SERM) effects. A library of tetrahydroisoquinoline-N-substituted derivatives (phenolic compounds) was synthesized by solid-phase chemistry and tested on estrogen-sensitive breast cancer T-47D cells. Three phenolic compounds devoid of estrogenic activity and toxicity emerged from this screening. Their sulfamate analogs were then synthesized, tested in STS-transfected HEK-293 cells, and found to be potent inhibitors of the enzyme (IC50 of 3.9, 8.9, and 16.6 nM). When tested in T-47D cells they showed no estrogenic activity and produced a moderate antiestrogenic activity. The compounds were further tested on osteoblast-like Saos-2 cells and found to significantly stimulate their proliferation as well as their alkaline phosphatase activity, thus suggesting a SERM activity. These results are supported by molecular docking experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2016.04.044DOI Listing

Publication Analysis

Top Keywords

steroid sulfatase
8
estrogen-sensitive breast
8
breast cancer
8
phenolic compounds
8
t-47d cells
8
estrogenic activity
8
activity
5
discovery sulfamate-based
4
sulfamate-based steroid
4
sulfatase inhibitor
4

Similar Publications

Steroid sulfatase suppresses keratinization by inducing proteasomal degradation of E-cadherin via Hakai regulation.

Biochim Biophys Acta Mol Cell Res

January 2025

College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea. Electronic address:

X-linked ichthyosis (XLI) is a genetic disorder characterized by a steroid sulfatase (STS) deficiency inducing excessive cholesterol sulfate accumulation and keratinization. Our study utilizes STS knockout mice to reproduce the hyperkeratinization typical of XLI, providing a valuable model for investigating the underlying mechanisms. From the experiment of STS-deficient keratinocytes using the CRISPR/Cas9 system, we observed upregulation of E-cadherin, which is associated with keratinocyte differentiation and stratification.

View Article and Find Full Text PDF

Enhanced expression of Cyp17a1 and production of DHEA-S in the liver of late-pregnant rats.

Gen Comp Endocrinol

January 2025

Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan.

Cytochrome P450 17A1 (CYP17A1) catalyzes two enzymatic reactions in the biosynthesis of dehydroepiandrosterone (DHEA) from pregnenolone. In pregnant humans, the adrenal gland is responsible for DHEA biosynthesis, which is then sulfated by SULT2A1 and released into the bloodstream. This sulfated DHEA is subsequently taken up by the placenta and deconjugated to serve as a precursor for estrogen biosynthesis.

View Article and Find Full Text PDF

Background/aim: Breast cancer is mostly affected by estrogen, which promotes proliferation, tumorigenesis, and cancer progression. Estrogen sulfotransferase (SULT1E1) catalyzes sulfation to inactivate estrogens, whereas steroid sulfatase (STS) catalyzes estrogen sulfate hydrolysis to activate estrogens in breast cancer cells. Three major organosulfur compounds in garlic (Allium sativum L.

View Article and Find Full Text PDF

The diagnostic prevalence of autism spectrum disorders (ASD) shows boys to be more affected than girls. Due to this reason, there is a lack of research including and observing ASD girls. Present study was aimed to detect hormones of steroidogenesis pathway in prepubertal girls (n = 16) diagnosed with ASD and sex and age matched neurotypical controls (CTRL, n = 16).

View Article and Find Full Text PDF

Recent advances in the development of 17beta-hydroxysteroid dehydrogenase inhibitors.

Steroids

January 2025

Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec Research Center-Université Laval, Québec, QC G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada.

Article Synopsis
  • The 17β-hydroxysteroid dehydrogenases (17β-HSDs) family has multiple isoforms that can convert steroids between their alcohol and carbonyl forms based on the cofactor available.
  • These enzymes play crucial roles in regulating estrogens and androgens, making them promising targets for therapies against conditions like breast cancer, prostate cancer, and Alzheimer's disease.
  • The article reviews recent developments in inhibitors targeting various isoforms, highlighting both traditional and new dual inhibitors, organized by type and research group for clarity.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!