The plant vascular system, and specifically the phloem, plays a pivotal role in allocation of fixed carbon to developing sink organs. Although the processes involved in loading and unloading of sugars and amino acids are well characterized, little information is available regarding the nature of other metabolites in the sieve tube system (STS) at specific sites along the pathway. Here, we elucidate spatial features of metabolite composition mapped with phloem enzymes along the cucurbit STS. Phloem sap (PS) was collected from the loading (source), unloading (apical sink region) and shoot-root junction regions of cucumber, watermelon and pumpkin. Our PS analyses revealed significant differences in the metabolic and proteomic profiles both along the source-sink pathway and between the STSs of these three cucurbits. In addition, metabolite profiles established for PS and vascular tissue indicated the presence of distinct compositions, consistent with the operation of the STS as a unique symplasmic domain. In this regard, at various locations along the STS we could map metabolites and their related enzymes to specific metabolic pathways. These findings are discussed with regard to the function of the STS as a unique and highly complex metabolic space within the plant vascular system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.13209 | DOI Listing |
Food Res Int
December 2024
Danone Research & Innovation, Utrecht, The Netherlands. Electronic address:
Enteral Nutrition (EN) is used for the dietary management of patients requiring tube feed and who are at risk of disease related malnutrition. Previously, EN with a dairy-dominant p4 protein blend (DD-P4: 20% soy, 20% pea, 25% casein and 35% whey) was shown to not coagulate in the stomach, increase gastric emptying rate and reduce gastric residual volume compared to EN with casein-dominant protein blends (CD; 80% casein and 20% whey), which is relevant for upper gastrointestinal tolerance. In line with the EAT-Lancet report, a new plant-dominant protein blend (PD-P4: 46% soy, 32% pea, 16% casein and 6% whey) was developed.
View Article and Find Full Text PDFParticle aggregates blown along the surface of playas have been linked to the disruption of interparticle bonds, comminution, and dust production. This mechanism was investigated in a set of wind tunnel experiments with the purpose of examining the rate of comminution during transport, role of bed roughness, influence of humidity, system dynamics, and proportionate amount of dust production. The playa sediment selected for testing was obtained from Owens Lake in California, USA.
View Article and Find Full Text PDFMaterials (Basel)
October 2024
Regional Center of Excellence for Electricity Control (CERME), University of Lome, Lome 01 BP 1515, Togo.
Carbon-based electrodes have recently been most widely used in P-MFC due to their desirable properties such as biocompatibility, chemical stability, affordable price, corrosion resistance, and ease of regeneration. In general, carbon-based electrodes, particularly graphite, are produced using a complex process based on petroleum derivatives at very high temperatures. This study aims to produce electrodes from bio-pitch and charcoal powder as an alternative to graphite electrodes.
View Article and Find Full Text PDFAnn Bot
November 2024
Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
Background And Aims: The transformation of sieve elements (SEs) from meristematic cells, equipped with a full complement of organelles, to specialized transport tubes devoid of a nucleus, has long been enigmatic. We hypothesized a strong involvement of various degradation pathways, particularly macroautophagy in this context, emphasizing the importance of autophagic selectivity in the remaining viability of these cells.
Methods: Experiments were performed on pioneer roots of Populus trichocarpa cultivated in rhizotrons under field conditions.
Microsc Microanal
November 2024
Department of Botany, University of Peshawar, Pakistan.
Micromorphological and phytochemical studies play a major role in quality control and standardization of traditional or herbal medications. In the present research, micromorphological assessment of Heliotropium rarifloum stocks was performed through light and scanning electron microscopies (LM & SEM). The anatomy of leaves, stem and root showed salient histological features.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!