NFATc4 and myocardin synergistically up-regulate the expression of LTCC α1C in ET-1-induced cardiomyocyte hypertrophy.

Life Sci

Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, PR China, 300457; Institute of Biology and Medicine, Wuhan University of Science and Technology, PR China, 430000. Electronic address:

Published: June 2016

Aims: Dysregulation of Ca(2+) is a central cause of cardiac hypertrophy. The α1C subunit of L-type Ca(2+) channel (LTCC) is a pore-forming protein which is responsible for the voltage-dependent channel gating and channel selectivity for Ca(2+). Myocardin and nuclear factor of activated T-cells c4 (NFATc4) are two key transcription factors in cardiac hypertrophy. We aimed to investigate the underlying mechanism of the transcriptional regulation of LTCC α1C by myocardin and NFATc4 in hypertrophic cardiomyocytes.

Main Methods: Endothelin-1 (ET-1) was used to induce cardiomyocyte hypertrophy. Cyclosporin A (CSA) was used to block the activation of calcineurin/NFATc4 pathway in ET-1-treated cardiomyocytes and the expression of LTCC α1C were examined. Overexpression or RNAi interfering experiments were performed to investigate the effects of NFATc4 or myocardin on the transcriptional regulation of LTCC α1C. Interactions between NFATc4 and myocardin or the association of NFATc4 with myocardin promoter were assessed via Co-IP or ChIP assays respectively.

Key Findings: In the present study, we found that ET-1 stimulated LTCC α1C transcription in neonatal rat cardiomyocytes partially via the activation of calcineurin/NFATc4 pathway. Overexpression of NFATc4 or myocardin promoted LTCC α1C expression in cardiomyocytes. Ca(2+) channel blocker verapamil or knockdown of α1C inhibited myocardin-induced cardiomyocyte hypertrophy. Further studies showed that NFATc4 interacted with myocardin to synergistically activate the expression of LTCC α1C, moreover, NFATc4 activated myocardin expression by binding to its promoter.

Significance: Our results suggest a novel mechanism of the transcriptional regulation of LTCC α1C by synergistic activities of NFATc4 and myocardin in ET-1-induced cardiomyocyte hypertrophy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2016.05.007DOI Listing

Publication Analysis

Top Keywords

ltcc α1c
32
nfatc4 myocardin
24
cardiomyocyte hypertrophy
16
expression ltcc
12
transcriptional regulation
12
regulation ltcc
12
nfatc4
10
α1c
10
ltcc
9
myocardin
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!