Analysis of silica nanoparticles by capillary electrophoresis coupled to an evaporative light scattering detector.

Anal Chim Acta

Analytical Chemistry and Food Technology Department, University of Castilla-La Mancha, Camilo José Cela Avenue, E-13005, Ciudad Real, Spain; Regional Institute for Applied Chemistry Research, IRICA, Camilo José Cela Avenue, E-13005, Ciudad Real, Spain. Electronic address:

Published: June 2016

A simple and rapid methodology has been developed to identify and separate silica nanoparticles (SiO2NPs) of different sizes in aqueous solution by capillary zone electrophoresis coupled to an evaporative light scattering detector (CE-ELSD). SiO2NPs were separated using 3 mM ammonium acetate buffer, containing 1% methanol at pH 6.9. SiO2NPs of 20, 50 and 100 nm were successfully separated under the optimum experimental conditions. CE coupled to ELSD has been proven to be an effective separation technique to determine particles with such small sizes, although the peaks are very close to each other, and it is a promising technique that may allow the separation of other types of nanoparticles. Confirmation by TEM and quantification of the SiO2 content was also carried out by inductively coupled plasma-mass spectrometry (ICP-MS). The new method was applied to the analysis of real samples, in order to assess its ability to avoid matrix effects in the determination of SiO2NPs in these kinds of samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2016.03.055DOI Listing

Publication Analysis

Top Keywords

silica nanoparticles
8
electrophoresis coupled
8
coupled evaporative
8
evaporative light
8
light scattering
8
scattering detector
8
analysis silica
4
nanoparticles capillary
4
capillary electrophoresis
4
coupled
4

Similar Publications

Advancements in functional adsorbents for sustainable recovery of rare earth elements from wastewater: A comprehensive review of performance, mechanisms, and applications.

Adv Colloid Interface Sci

January 2025

School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, Central South University, Changsha 410083, Hunan, China.

Rare earth elements (REEs) are crucial metallic resources that play an essential role in national economies and industrial production. The reclaimation of REEs from wastewater stands as a significant supplementary strategy to bolster the REEs supply. Adsorption techniques are widely recognized as environmentally friendly and sustainable methods for the separation of REEs from wastewater.

View Article and Find Full Text PDF

Sorafenib-Loaded Silica-Containing Redox Nanoparticle Decreases Tumorigenic Potential of Lewis Lung Carcinoma.

Pharmaceutics

January 2025

Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8573, Ibaraki, Japan.

Orally administered sorafenib has shown limited improvement in overall survival for non-small-cell lung cancer patients, likely due to poor pharmacokinetics and adverse effects, including gastrointestinal toxicity. To address these issues, we developed silica-containing antioxidant nanoparticles (siRNP) as a carrier to enhance the therapeutic efficacy of lipophilic sorafenib. Sorafenib was loaded into siRNP via dialysis (sora@siRNP).

View Article and Find Full Text PDF

The study aimed to develop a superhydrophobic coating on the aluminium alloy 2024-T3 surface. The desired surface roughness and low surface energy were achieved with SiO nanoparticles, synthesised via the Stöber method and modified with alkyl silane (AS) or perfluoroalkyl silane (FAS). To enhance particle adhesion to the alloy substrate, nanoparticles were incorporated into a hybrid sol-gel coating composed of tetraethyl orthosilicate, methyl methacrylate, and 3-methacryloxypropyl trimethoxysilane.

View Article and Find Full Text PDF

Macrophage-Mediated Liquid Metal Nanoparticles for Enhanced Tumor Accumulation and Inhibition.

ACS Biomater Sci Eng

January 2025

State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.

In most studies, the penetration of nanoparticles into tumors was mainly dependent on the enhanced permeability and retention (ERP) effect. However, the penetration of nanoparticles would be limited by tumor-dense structure, immune system, and other factors. To solve these problems, macrophages with active tropism to tumor tissues, loaded nanoparticles with photothermal therapy, and chemotherapy were designed.

View Article and Find Full Text PDF

Synchronous enhancement of antimicrobial and mechanical properties of natural rubber by MXene functionalized with SiO.

Int J Biol Macromol

January 2025

Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan 650500, China; Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Yunnan International Joint Laboratory of Sustainable Polymers, Yunnan 650500, China; Engineering Research Center of Biodegradable Polymers, Educational Commission of Yunnan Province, Kunming, Yunnan 650500, China. Electronic address:

The development of natural rubber (NR) gloves with superior antibacterial and enhanced mechanical properties is critical for safeguarding healthcare personnel. In this study, Ti-based MXene (TiCT) nanosheets were employed for the first time as an antibacterial agent to improve the antimicrobial performance of NR. Through SiO₂ intercalation via electronic assembly, the antibacterial efficacy of MXene was significantly boosted, achieving 100 % lethality against E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!