Determining soil redistribution and sediment budgets in watersheds is often challenging. One of the methods for making such determinations employs soil and sediment fingerprinting techniques, using sediment properties such as geochemistry, fallout radionuclides, and mineral magnetism. These methods greatly improve the estimation of erosion and deposition within a watershed, but are limited when determining land use-based soil and sediment movement. Recently, compound-specific stable isotopes (CSSIs), which employ fatty acids naturally occurring in the vegetative cover of soils, offer the possibility of refining fingerprinting techniques based on land use, complementing other methods that are currently in use. The CSSI method has been met with some success; however, challenges still remain with respect to scale and resolution due to a potentially large degree of biological, environmental and analytical uncertainty. By better understanding the source of tracers used in CSSI work and the inherent biochemical variability in those tracers, improvement in sample design and tracer selection is possible. Furthermore, an understanding of environmental and analytical factors affecting the CSSI signal will lead to refinement of the approach and the ability to generate more robust data. This review focuses on sources of biological, environmental and analytical variability in applying CSSI to soil and sediment fingerprinting, and presents recommendations based on past work and current research in this area for improving the CSSI technique. A recommendation, based on current information available in the literature, is to use very-long chain saturated fatty acids and to avoid the use of the ubiquitous saturated fatty acids, C16 and C18.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2016.04.137 | DOI Listing |
Natl Sci Rev
January 2025
Center for Advances in Water and Air Quality, Lamar University, Beaumont, TX 77710, USA.
Wetlands in the Qinghai-Tibet Plateau are a unique and fragile ecosystem undergoing rapid changes. We show two unique patterns of mercury (Hg) accumulation in wetland sediments. One is the 'surface peak' in monsoon-controlled regions and the other is the 'subsurface peak' in westerly-controlled regions.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Karst Science, Guizhou Normal University, Guiyang 550001, PR China.
Extreme precipitation is a crucial trigger for soil erosion events in karst regions. However, the existence of a scale effect in suspended sediment characteristics of karst basins and which extreme precipitation variables control this effect remain unclear. To investigate this, we analyzed the scale effect on suspended sediment characteristics using monthly hydrological data from five karst basins of varying scales, consistently monitored from 2012 to 2019.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
The surging prevalence rates of ESBL-producing (ESBL-Ec) pose a serious threat to public health. To date, most research on drug-resistant bacteria and genes has focused on livestock and poultry breeding areas, hospital clinical areas, natural water environments, and wastewater treatment plants. However, few studies have been conducted on drug-resistant bacteria in vegetable cultivation.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Bio and Environmental Technology, College of Natural Science, Seoul Women's University, Seoul 01797, Republic of Korea.
The bacteriome profile was studied in freshwater ecosystems within the Yonghwasil pond, situated at the National Institute of Ecology, Seocheon-gun, Chungcheongnam-do, central western Korea. Six samples from water, mud, and soil niches were assessed, specifically from lake water, bottom mud (sediment), and root-soil samples of Bulrush, wild rice, Reed, and Korean Willow. Notably, the phylum exhibited an upward trend moving from water to mud to soil samples, whereas showed a contrasting decrease.
View Article and Find Full Text PDFMolecules
December 2024
Faculty of Chemistry, Brno University of Technology, Purkyňova 118/464, 612 00 Brno, Czech Republic.
The presence of pharmaceuticals in nature systems poses a threat to the environment, plants, animals, and, last but not least, human health. Their transport in soils, waters, and sediments plays important roles in the toxicity and bioavailability of pharmaceuticals. The mobility of pharmaceuticals can be affected by their interactions with organic matter and other soil and water constituents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!