N-doped mesoporous carbons supported palladium catalysts prepared from chitosan/silica/palladium gel beads.

Int J Biol Macromol

Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China.

Published: August 2016

In this study, a heterogeneous catalyst including palladium nanoparticles supported on nitrogen-doped mesoporous carbon (Pd@N-C) is synthesized from palladium salts as palladium precursor, colloidal silica as template, and chitosan as carbon source. N2 sorption isotherm results show that the prepared Pd@N-C had a high BET surface area (640m(2)g(-1)) with large porosity. The prepared Pd@N-C is high nitrogen-rich as characterized with element analysis. X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), and Raman spectroscopy characterization of the catalyst shows that the palladium species with different chemical states are well dispersed on the nitrogen-containing mesoporous carbon. The Pd@N-C is high active and shows excellent stability as applied in Heck coupling reactions. This work supplies a successful method to prepare Pd heterogeneous catalysts with high performance from bulk biopolymer/Pd to high porous nitrogen-doped carbon supported palladium catalytic materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2016.05.011DOI Listing

Publication Analysis

Top Keywords

pd@n-c high
12
supported palladium
8
mesoporous carbon
8
carbon pd@n-c
8
prepared pd@n-c
8
palladium
6
high
5
n-doped mesoporous
4
mesoporous carbons
4
carbons supported
4

Similar Publications

Engineering Nickel/Palladium Heterojunctions for Dehydrogenation of Ammonia Borane: Improving the Catalytic Performance with 3D Mesoporous Structures and External Nitrogen-Doped Carbon Layers.

Inorg Chem

February 2020

Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering , Jiangsu Normal University, Xuzhou , 221116 , P. R. China.

Catalysts based on metallic NPs have shown high activities in heterogeneous catalysis, due to their high fractions of surface-active atoms, which, however, will lead to the sacrifices in stability and recycle of catalysts. In order to balance well the relationship between activity, stability, and recovery, in this paper, we have constructed a 3D mesoporous sphere structure assembled by N-doped carbon coated Ni/Pd NP heterojunctions (Ni/Pd@N-C). This obtained Ni/Pd@N-C has shown high catalytic activity, durability and recyclability for the hydrolytic dehydrogenation of ammonia borane (AB).

View Article and Find Full Text PDF

N-doped mesoporous carbons supported palladium catalysts prepared from chitosan/silica/palladium gel beads.

Int J Biol Macromol

August 2016

Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China.

In this study, a heterogeneous catalyst including palladium nanoparticles supported on nitrogen-doped mesoporous carbon (Pd@N-C) is synthesized from palladium salts as palladium precursor, colloidal silica as template, and chitosan as carbon source. N2 sorption isotherm results show that the prepared Pd@N-C had a high BET surface area (640m(2)g(-1)) with large porosity. The prepared Pd@N-C is high nitrogen-rich as characterized with element analysis.

View Article and Find Full Text PDF

A composite catalyst including palladium nanoparticles on titania (TiO2) and on nitrogen-modified porous carbon (Pd/TiO2@N-C) is synthesized from palladium salts, tetrabutyl titanate, and chitosan. N2 sorption isotherms show that the catalyst has a high BET surface area (229 m(2)  g(-1)) and large porosity. XPS and TEM characterization of the catalyst shows that palladium species with different chemical states are well dispersed across the TiO2 and nitrogen-modified porous carbon, respectively.

View Article and Find Full Text PDF

Linear polyethylene propagation starting from Pd phosphine-sulfonate complexes, Pd(CH(3))(L)(Ar(2)PC(6)H(4)SO(3)) (L = 2,6-lutidine, Ar = o-MeOC(6)H(4) (2a) and L = pyridine, Ar = Ph (2b)), was studied both experimentally and theoretically. Experimentally, highly linear polyethylene was obtained with Pd(CH(3))(L)(Ar(2)PC(6)H(4)SO(3)) complexes 2a and 2b. Formation of a long alkyl-substituted palladium complex (3) was detected as a result of ethylene oligomerization on a palladium center starting from methylpalladium complex.

View Article and Find Full Text PDF

This contribution describes the substrate scope and mechanism of Pd-catalyzed ligand-directed C-H arylation with diaryliodonium salts. This transformation was applied to the synthesis of a variety of different biaryl products, using directing groups including pyridines, quinolines, pyrrolidinones, and oxazolidinones. Electronically and sterically diverse aryl groups (Ar) were transferred in high yield using iodine(III) reagents of general structure [Mes-I-Ar]BF(4).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!