We have designed and synthesized a simple but effective fluorescent probe for sensing glutathione (GSH) by PET process based on coumarin and quinone, which worked as fluorophore and reaction site, respectively. The probe could discriminate GSH from cysteine and homocysteine within 1 min in PBS-buffered solution. The sensing mechanism was confirmed by density functional theory (DFT), viscosity test, fluorescence spectrum analysis and HRMS, respectively. The probe has a low limit of detection (0.1 μM) and finally been used in cell imaging successfully.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2016.04.003 | DOI Listing |
Methods Mol Biol
January 2025
Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
Mosaic Analysis with Double Markers (MADM) represents a mouse genetic approach coupling differential fluorescent labeling to genetic manipulations in dividing cells and their lineages. MADM uniquely enables the generation and visualization of individual control or homozygous mutant cells in a heterozygous genetic environment. Among its diverse applications, MADM has been used to dissect cell-autonomous gene functions important for cortical development and neural development in general.
View Article and Find Full Text PDFACS Sens
January 2025
Hubei Key Laboratory of Genetic Regulation & Integrative Biology, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
Heme oxygenase-1 (HO-1) catalyzes heme degradation on the consumption of NADPH and molecular oxygen. As an inducible enzyme, HO-1 is highly induced in various disease states, including cancer. Currently, two fluorescent probes for HO-1 have been designed based on the catalytic activity of HO-1, in which the probes serve as a substrate, so NADPH is required to enable the detection.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea.
Correction for '(Thio)chromenone derivatives exhibit anti-metastatic effects through selective inhibition of uPAR in cancer cell lines: discovery of an uPAR-targeting fluorescent probe' by So-Young Chun , , 2025, https://doi.org/10.1039/D4CC05907G.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada.
Threads coated with bioresponsive materials hold promise for innovative wearable diagnostics. However, most thread coatings reported so far cannot be easily customized for different analytes and frequently incorporate non-biodegradable components. Most optically active thread coatings rely on dyes, which often exhibit irreversible responses.
View Article and Find Full Text PDFAnal Biochem
December 2024
Internal medicine, Shijiazhuang Fourth Hospital (Obstetrics and Gynecology Hospital Affiliated to Hebei Medical University), Shijiazhuang City, Hebei Province, 050033, China. Electronic address:
Simple yet specific miRNA detection remains an enormous challenge due to its low abundance in samples and the high similarity among homologous miRNAs. Here, we propose a novel fluorescent approach for miRNA detection with greatly elevated accuracy by utilizing exonuclease-iii (Exo-iii) assisted twice target recognition. The proposed method involves a "Sensing probe" engineered with two loop sections to facilitate dual target miRNA recognition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!