Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A new rhodamine B-benzofurazan based fluorescent probe (1) for Fe(3+) and Hg(2+) was synthesized. In aqueous solution containing 30% (v/v) ethanol, probe 1 shows a high selective fluorescent enhancement recognition to Fe(3+) with a binding ratio of 1:1 (probe 1: Fe(3+)), when the concentration of Fe(3+) is less than that of the probe. When the concentration of Fe(3+) is higher than that of the probe, it shows fluorescent "turn-on" response to Fe(3+) by opening the rhodamine spirolactam with a binding ratio of 1:2 (probe 1: Fe(3+)). Furthermore, probe 1 displays a high selectivity and a hypersensitivity (detection limit is 4.4nM) to Hg(2+) with a binding ratio of 1:1 in ethanol. NMR and UV-vis experiments indicate that the different fluorescent recognition signals to Fe(3+) and Hg(2+) are derived from different binding modes of 1-Fe(3+) and 1-Hg(2+).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2016.03.090 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!