While the complicated pathogenesis of cancer results in limited therapeutic efficacy of current mono-drug treatment, combination therapy by multiple drugs is becoming increasingly attractive due to the decreased side effects and synergistic anti-cancer activities. The recently emerging modality is the co-delivery of traditional chemotherapeutics and anti-angiogenesis agents. Although nanocarriers are frequently utilized for the co-delivery of different drugs, there are still concerns regarding their implementations. Most of the nanocarriers cannot release drugs separately into their different targeted sites of action. Therefore, we have developed a micellar platform for the co-delivery of an antiangiogenesis agent, axitinib (AXI) and a DNA intercalator, doxorubicin (DOX). Our results showed that this cross-linked micelle (DA-CM) could release AXI and DOX in tumor extracellular environment and intracellular lysosome compartments, respectively, in response to the dual pH stimulus. Notably, DA-CM exhibited remarkably improved tumor accumulation, cell internalization, tumor spheroids penetration and cytotoxicity. Ultimately, DA-CM reduced the number of immature vessels within xenograft tumors, demonstrating an effective antiangiogenesis effect. Meanwhile, they inhibited tumor growth by 88%. Our co-delivery micellar system with the dual-pH responsive feature might hold great promises for the combinatory cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2016.04.060 | DOI Listing |
Colloids Surf B Biointerfaces
December 2024
Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China. Electronic address:
Traditional cancer therapies, such as chemotherapy, often lack specificity, resulting in severe toxic side effects and limited therapeutic efficacy. There is an urgent need to develop innovative multifunctional nanomedicine carriers that integrate precise diagnosis, targeted therapy, real-time monitoring, and the synergistic effects of multiple therapeutic approaches. In this study, a composite nanodrug delivery system (GO-HA-Ce6-GNRs) based on graphene oxide (GO) was innovatively prepared, which was functionalized with the targeting molecule hyaluronic acid (HA), the photosensitizer chlorin e6 (Ce6), and the photothermal material gold nanorods (GNRs).
View Article and Find Full Text PDFGels
December 2024
"Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania.
An imbalance in the body's pH or temperature may modify the immune response and result in ailments such as autoimmune disorders, infectious diseases, cancer, or diabetes. Dual pH- and thermo-responsive carriers are being evaluated as advanced drug delivery microdevices designed to release pharmaceuticals in response to external or internal stimuli. A novel drug delivery system formulated as hydrogel was developed by combining a pH-sensitive polymer (the "biosensor") with a thermosensitive polymer (the delivery component).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
Inflammatory bowel disease involves excess reactive oxygen species (ROS) and hydrogen sulfide (HS) at inflammatory sites. Nanozyme-mediated ROS and HS scavenging therapy is promising for colitis treatment. Here, we synthesized a multiple ROS scavenging CuO nanoparticle and first explored its HS scavenging capacity.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of pharmacy, Xinxiang Medical University, 453003 Xinxiang, PR China. Electronic address:
Primary resection surgery is a conventional approach in breast cancer treatment, which plays a pivotal role in the prevention of recurrence and metastasis. In this study, an injectable hydrogel comprising chitosan (CS), β-glycerophosphate (β-GP), and dopamine (DA) with near-infrared (NIR) photothermal attributes was developed. The composite hydrogels integrate doxorubicin (DOX), termed DCGD, and can be used for chemotherapy, synergistic photothermal therapy, anti-bacterial and hemostasis.
View Article and Find Full Text PDFInt J Pharm
January 2025
Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Ciudad Universitaria, Haya de la Torre and Medina Allende, Science Building 2, Córdoba X5000HUA, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA, Córdoba X5000HUA, Argentina. Electronic address:
Stimulus-responsive liposomes (L) are increasingly recognized for their potential in enhancing therapies, especially in cancer nanomedicine, owing to their ability to encapsulate drugs of diverse properties efficiently. In this study, a quality-by-design (QbD) strategy was proposed to optimize the surface functionalization of gold nanoparticles (AuNPs) on doxorubicin (Dox)-loaded L intended for improving cancer treatment. Thin-film hydration and pH-gradient methods were applied for L preparation and Dox loading, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!