Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.addr.2016.04.011 | DOI Listing |
Pharm Res
January 2025
Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
Improving the bioavailability of poorly water-soluble drugs presents a significant challenge in pharmaceutical development. Amorphous solid dispersions (ASDs) have garnered substantial attention for their capability to augment the solubility and dissolution rate of poorly water-soluble drugs, thereby markedly enhancing their bioavailability. ASDs, characterized by a metastable equilibrium where the active pharmaceutical ingredient (API) is molecularly dispersed, offer enhanced absorption compared to crystalline forms.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, Pushp Vihar, Sector 3, New Delhi, 110017, India.
The repercussions of hormone replacement therapy (HRT) and bisphosphonates pose serious clinical challenges and warrant novel therapies for osteoporosis in menopausal women. To confront this issue, the present research aimed to design and fabricate daidzein (DZ); a phytoestrogen-loaded hydroxyapatite nanoparticles to mimic and compensate for synthetic estrogens and biomineralization. Hypothesizing this bimodal approach, hydroxyapatite nanoparticles (HAPNPs) were synthesized using the chemical-precipitation method followed by drug loading (DZHAPNPs) via sorption.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University ERICA, Ansan 15588, Republic of Korea. Electronic address:
Limited aqueous solubility is a major hurdle resulting in poor and variable oral bioavailability, high doses, side effects, and the suboptimal therapeutic efficacy of sorafenib (SRF). In this study, we developed SRF-loaded solid lipid nanoparticles (SRF-SLNs) and lipid core-chitosan shell hybrid nanoparticles (CS-SRF-SLNs) to improve the oral absorption of SRF. SRF-SLNs were prepared using a stearyl alcohol core stabilized with a surfactant mixture, followed by surface decoration with chitosan to form CS-SRF-SLNs.
View Article and Find Full Text PDFMethods Protoc
January 2025
Department of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
Multi-drug delivery systems have gained increasing interest from the pharmaceutical industry. Alongside this is the interest in amorphous solid dispersions as an approach to achieve effective oral delivery of compounds with solubility-limited bioavailability. Despite this, there is limited information regarding predicting the behavior of two or more drugs (in amorphous forms) in a polymeric carrier and whether molecular interactions between the compounds, between each compound, and if the polymer have any effect on the physical properties of the system.
View Article and Find Full Text PDFPharm Nanotechnol
January 2025
Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph University, Philadelphia, PA.
Background: Itraconazole (ICZ) has been approved by the FDA to treat many fungal infections including, blastomycosis, histoplasmosis, and aspergillosis. ICZ can be also used as prophylaxis in the population who are at high risk for developing systemic fungal infections, such as HIV patients, and chemotherapy patients.
Aim: However, since ICZ is a BCS Class II drug that has low solubility and high permeability, leads to low oral bioavailability.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!