AI Article Synopsis

  • The study examined how copper contamination affects sucrose metabolism and biomass distribution in two populations of Elsholtzia haichowensis, one from a copper-contaminated site and one from a non-contaminated site.
  • In the copper-contaminated population, plants allocated more biomass to roots in response to copper, while the non-contaminated population allocated more to shoots.
  • The changes in biomass allocation were linked to differences in sucrose levels, with the contaminated population showing increased sucrose in roots and decreased in leaves, indicating altered sucrose transport mechanisms compared to the non-contaminated population.

Article Abstract

Hydroponic culture was used to comparatively investigate the copper (Cu)-induced alteration to sucrose metabolism and biomass allocation in two Elsholtzia haichowensis Sun populations with one from a Cu-contaminated site (CS) and the other from a non-contaminated site (NCS). Experimental results revealed that biomass allocation preferred roots over shoots in CS population, and shoots over roots in NCS population under Cu exposure. The difference in biomass allocation was correlated with the difference in sucrose partitioning between the two populations. Cu treatment (45 μM) significantly decreased leaf sucrose content and increased root sucrose content in CS population as a result of the increased activities of leaf sucrose synthesis enzymes (sucrose phosphate synthetase and sucrose synthase) and root sucrose cleavage enzyme (vacuolar invertase), which led to increased sucrose transport from leaves to roots. In contrast, higher Cu treatment increased sucrose content in leaves and decreased sucrose content in roots in NCS population as a result of the decreased activities of root sucrose cleavage enzymes (vacuolar and cell wall invertases) that led to less sucrose transport from leaves to roots. These results provide important insights into carbon resource partitioning and biomass allocation strategies in metallophytes and are beneficial for the implementation of phytoremediation techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15226514.2016.1183564DOI Listing

Publication Analysis

Top Keywords

biomass allocation
16
sucrose content
16
sucrose
14
root sucrose
12
alteration sucrose
8
sucrose partitioning
8
elsholtzia haichowensis
8
haichowensis sun
8
sun populations
8
roots ncs
8

Similar Publications

Assessment of nutrient storage and translocation in winter harvested Typha latifolia from free-water surface treatment wetland mitigating diffuse agricultural pollution.

Sci Total Environ

January 2025

Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia; Department of Environmental Science, Policy and Management, University of California at Berkeley, USA.

Wetland macrophytes play a critical role in the performance of treatment wetlands (TWs), primarily through nutrient uptake. However, this retention is temporary, as nutrients are released back into the water upon the decomposition of plant litter. The removal of stored nutrients from TWs can be efficiently achieved by harvesting plants during the peak of the growing season, albeit with significant ecological disturbance.

View Article and Find Full Text PDF

This research investigates the pulp and paper industry's transition to sustainability by valorizing unused roadside and natural grasses for paper production. Large-scale production from residual grass poses multifaceted challenges, requiring collaboration across stakeholders, from biomass collection to manufacturing. To understand key drivers and barriers within this complex system, experts from various fields, including local farmers, researchers, policymakers, and industry executives were interviewed, leading to the development of a Fuzzy Cognitive Map (FCM).

View Article and Find Full Text PDF

Inferring metabolic objectives and trade-offs in single cells during embryogenesis.

Cell Syst

December 2024

Center for Bioinformatics and Computational Medicine, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA. Electronic address:

While proliferating cells optimize their metabolism to produce biomass, the metabolic objectives of cells that perform non-proliferative tasks are unclear. The opposing requirements for optimizing each objective result in a trade-off that forces single cells to prioritize their metabolic needs and optimally allocate limited resources. Here, we present single-cell optimization objective and trade-off inference (SCOOTI), which infers metabolic objectives and trade-offs in biological systems by integrating bulk and single-cell omics data, using metabolic modeling and machine learning.

View Article and Find Full Text PDF

Excessive copper induces lignin biosynthesis in the leaves and roots of two citrus species: Physiological, metabolomic and anatomical aspects.

Ecotoxicol Environ Saf

January 2025

College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Lab of Soil Ecosystem Health and Regulation, Fujian Province University (Fujian Agriculture and Forestry University), Fuzhou 350002, China. Electronic address:

Excessive copper (Cu) of rhizosphere inhibited the growth and development of citrus seedlings. Lignin deposition on the cell wall promotes plant Cu tolerance. However, the lignin biosynthesis in citrus leaves and roots that respond to Cu toxicity is not fully understood.

View Article and Find Full Text PDF

Biomass allocation between reproductive and vegetative organs of Artemisia along a large environmental gradient.

BMC Plant Biol

January 2025

State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

Background: Biomass allocation reflects functional tradeoffs among plant organs and thus represents life history strategies. However, little is known about the patterns and drivers of biomass allocation between reproductive and vegetative organs along large environmental gradients. Here, we examined how environmental gradients affect biomass and the allocation between reproductive and vegetative organs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!