A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantifying learning-dependent changes in the brain: Single-trial multivoxel pattern analysis requires slow event-related fMRI. | LitMetric

Single-trial analysis is particularly useful for assessing cognitive processes that are intrinsically dynamic, such as learning. Studying these processes with fMRI is problematic, as the low signal-to-noise ratio of fMRI requires the averaging over multiple trials, obscuring trial-by-trial changes in neural activation. The superior sensitivity of multivoxel pattern analysis over univariate analyses has opened up new possibilities for single-trial analysis, but this may require different fMRI designs. Here, we measured fMRI and pupil dilation responses during discriminant aversive conditioning, to assess associative learning in a trial-by-trial manner. The impact of design choices was examined by varying trial spacing and trial order in a series of five experiments (total n = 66), while keeping stimulus duration constant (4.5 s). Our outcome measure was the change in similarity between neural response patterns related to two consecutive presentations of the same stimulus (within-stimulus) and between patterns related to pairs of different stimuli (between-stimulus) that shared a specific outcome (electric stimulation vs. no consequence). This trial-by-trial similarity analysis revealed clear single-trial learning curves in conditions with intermediate (8.1-12.6 s) and long (16.5-18.4 s) intervals, with effects being strongest in designs with long intervals and counterbalanced stimulus presentation. No learning curves were observed in designs with shorter intervals (1.6-6.1 s), indicating that rapid event-related designs-at present, the most common designs in fMRI research-are not suited for single-trial pattern analysis. These findings emphasize the importance of deciding on the type of analysis prior to data collection.

Download full-text PDF

Source
http://dx.doi.org/10.1111/psyp.12665DOI Listing

Publication Analysis

Top Keywords

pattern analysis
12
multivoxel pattern
8
single-trial analysis
8
learning curves
8
analysis
7
fmri
6
single-trial
5
quantifying learning-dependent
4
learning-dependent changes
4
changes brain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!