Doping is a well-known approach to modulate the electronic and optical properties of nanoparticles (NPs). However, doping at nanoscale is still very challenging, and the reasons for that are not well understood. We studied the formation and doping process of iron and iron oxide NPs in real time by in situ synchrotron X-ray absorption spectroscopy. Our study revealed that the mass flow of the iron triggered by oxidation is responsible for the internalization of the dopant (molybdenum) adsorbed at the surface of the host iron NPs. The oxidation induced doping allows controlling the doping levels by varying the amount of dopant precursor. Our in situ studies also revealed that the dopant precursor substantially changes the reaction kinetics of formation of iron and iron oxide NPs. Thus, in the presence of dopant precursor we observed significantly faster decomposition rate of iron precursors and substantially higher stability of iron NPs against oxidation. The same doping mechanism and higher stability of host metal NPs against oxidation was observed for cobalt-based systems. Since the internalization of the adsorbed dopant at the surface of the host NPs is driven by the mass transport of the host, this mechanism can be potentially applied to introduce dopants into different oxidized forms of metal and metal alloy NPs providing the extra degree of compositional control in material design.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.6b01072DOI Listing

Publication Analysis

Top Keywords

nps oxidation
12
dopant precursor
12
oxidation induced
8
induced doping
8
x-ray absorption
8
nps
8
iron
8
iron iron
8
iron oxide
8
oxide nps
8

Similar Publications

This study investigates the potential of zinc oxide (ZnO) and Ag-doped zinc oxide (Ag-ZnO) nanoparticles (NPs) (1, 3 and 5 wt%) electrospun into poly(vinylidene fluoride) (PVDF) based triboelectric nanogenerators (TENGs) to harness electrical energy from ambient mechanical vibrations. ZnO and Ag-ZnO NPs were developed using a co-precipitation method. 3 wt% Ag-ZnO doping was optimized to exhibit a higher β-crystalline phase in PVDF (PAZ3).

View Article and Find Full Text PDF

Zinc oxide nanoparticle-embedded tannic acid/chitosan-based sponge: A highly absorbent hemostatic agent with enhanced antimicrobial activity.

Int J Biol Macromol

January 2025

Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1416634793, Iran; Wound Care Solution, Nano Fanavaran Narin Teb Co., Tehran, P.O. Box 19177-53531, Iran; Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen, 57076 Siegen, Germany. Electronic address:

This study reports the development of a highly absorbent Chitosan (CS)/Tannic Acid (TA) sponge, synthesized via chemical cross-linking with Epichlorohydrin (ECH) and integrated with zinc oxide nanoparticles (ZnO NPs) as a novel hemostatic anti-infection agent. The chemical properties of the sponges were characterized using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and zeta potential measurements. Morphological and elemental analyses conducted through scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDAX) revealed a uniform distribution of ZnO NPs, with particle sizes below 20 nm.

View Article and Find Full Text PDF

Background And Aim: In dental clinics, disinfecting alginate impression materials is a critical practice to prevent cross-infection. Recently, zinc oxide nanoparticles (ZnO NPs) have been explored for their potential antimicrobial properties, making them promising additives for dental materials. This study investigates the antimicrobial activity of ZnO NPs incorporated into alginate impression materials and assesses the impact on material flow.

View Article and Find Full Text PDF

The protective effect of zinc oxide nanoparticles on boar sperm during preservation at 17 °C.

Anim Reprod

January 2025

Hebei Key Laboratory of Animal Diversity, College of Life Sciences, Langfang Normal University, Hebei Langfang, China.

More than 90% of spermatozoa of boars in pork producing countries is stored in liquid at 17 °C; however, the quality of these spermatozoa is affected by bacterial breeding and oxidative damage. This study analyzed sperm quality and sperm capacitation after storage to study the effects of the effects of ZnO nanoparticles (ZnO NPs) supplementation on seminal plasma (SP)-free sperm preservation. We investigated the effects of adding 20, 50, 100 and 200 μg/mL of ZnO NPs to a seminal free boar sperm diluent over a 7-day period at 17 °C to assess the changes in non-capacitated/capacitated sperm quality parameters, antioxidant capacity, ATP content and extent of protein tyrosine phosphorylation.

View Article and Find Full Text PDF

Microplastic and nanoplastic exposure and risk of diabetes mellitus.

World J Clin Cases

January 2025

Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Linkou 33305, Taoyuan, Taiwan.

The issue of plastic pollutants has become a growing concern. Both microplastics (MPs) (particle size < 5 mm) and nanoplastics (NPs) (particle size < 1 µm) can cause DNA damage, cytotoxicity, and oxidative stress in various organisms. The primary known impacts of microplastic/nanoplastic are observed in the liver and respiratory system, leading to hepatotoxicity and chronic obstructive pulmonary disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!