Thin liquid films containing surfactant micelles or other nanocolloidal particles are considered to be the key structural elements of foams containing gas and liquid. We report here the experimental results and theoretical modeling for the phenomenon of the stratification (stepwise thinning) of a foam film formed from a nonionic micellar solution. The film stratification phenomenon was experimentally observed by reflected light microinterferometry. We observed that the stepwise layer-by-layer decrease of the film thickness is due to the appearance and growth of a dark spot of one layer less than the film thickness in the film. The dark spot expansion is driven by the diffusion of the dislocation (or vacancy) in the micellar lattice. The vacancies from the meniscus diffuse and condense into the dark spot, leading to its expansion inside the film. We experimentally observed the expansion of the dark spot at various film thicknesses (i.e., the number of micellar layers) and at different film sizes. We also measured the contact angle between the film and the meniscus; we used the data to estimate the structural film interaction energy barrier and the apparent diffusion coefficient. We used the two-dimensional diffusion model to model the dynamics of the dark spot expansion with consideration to the apparent diffusion coefficient and the film size. The model predictions are in good agreement with the experimental observations. On the basis of this model, we carried out a parametric study depicting the effects of the film thickness (or the number of micellar layers) and film area on the rate of the dark spot expansion. We also generalized the model previously proposed by Kralchevsky et al. [ Langmuir 1990 , 6 , 1180 - 1189 ], incorporating the effects of the film size, film thickness, and apparent diffusion coefficient to predict the dark spot expansion rate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.6b00561 | DOI Listing |
Plant Dis
January 2025
600 Changjiang Road, HarbinHarbin, China, 150030;
Blue honeysuckle (Lonicera caerulea L.) has been widely used in food, medicine, health products, cosmetics, materials, and other products. Between September 2022 and September 2023, a leaf spot disease was observed on approximately 20% of blue honeysuckle plants of the 'Lanjingling' cultivar grown in a 0.
View Article and Find Full Text PDFPlant Dis
December 2024
Northeast Agricultural University, Harbin, United States;
Vicia amoena is renowned for its high protein content and nutritional value, making it significant in animal production and traditional Chinese medicine production. In July 2023, typical anthracnose symptoms were observed on V. amoena leaves in Suihua City (125°82'E, 46°22'N), Heilongjiang Province, China, affecting approximately 40% of the plants (a total of 200 plants were surveyed).
View Article and Find Full Text PDFJ Vasc Access
December 2024
Nephrology and Dialysis Unit, IRCCS "Casa Sollievo della Sofferenza Hospital", San Giovanni Rotondo, 71013, Italy.
Plant Dis
December 2024
Korea University, Environmental Science & Ecological Engineering, Seoul, Seoul, Korea (the Republic of), 02841;
Cerastium glomeratum Thuill., known as sticky mouse-ear chickweed, is native to Europe and has become naturalized in the wild on most continents. After its accidental introduction to Korea around the 1980s, it quickly became one of the dominant invasive weeds on the Korean peninsula and is now considered a significant threat to the Korean agroecosystem (Park et al.
View Article and Find Full Text PDFPlant Dis
December 2024
College of Agriculture, Inner Mongolia Minzu University, Tongliao 028000, P. R. China;
Fangfeng (Saposhnikovia divaricata) is a perennial plant belonging to the Umbelliferae family, and is widely cultivated as a traditional Chinese medicine plant used to treat various diseases in northern China. In August 2022, a widespread leaf spot disease emerged on the Fangfeng leaves across a 2.5-acre farmland located in the Naiman District of Tongliao City, China ( 44°17' N; 121°29' E), where 5,000 acres of Fangfeng had been cultivated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!